Результаты поиска по 'complexity estimate':
Найдено статей: 55
  1. Fokin G.A., Volgushev D.B.
    Models for spatial selection during location-aware beamforming in ultra-dense millimeter wave radio access networks
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 195-216

    The work solves the problem of establishing the dependence of the potential for spatial selection of useful and interfering signals according to the signal-to-interference ratio criterion on the positioning error of user equipment during beamforming by their location at a base station, equipped with an antenna array. Configurable simulation parameters include planar antenna array with a different number of antenna elements, movement trajectory, as well as the accuracy of user equipment location estimation using root mean square error of coordinate estimates. The model implements three algorithms for controlling the shape of the antenna radiation pattern: 1) controlling the beam direction for one maximum and one zero; 2) controlling the shape and width of the main beam; 3) adaptive beamforming. The simulation results showed, that the first algorithm is most effective, when the number of antenna array elements is no more than 5 and the positioning error is no more than 7 m, and the second algorithm is appropriate to employ, when the number of antenna array elements is more than 15 and the positioning error is more than 5 m. Adaptive beamforming is implemented using a training signal and provides optimal spatial selection of useful and interfering signals without device location data, but is characterized by high complexity of hardware implementation. Scripts of the developed models are available for verification. The results obtained can be used in the development of scientifically based recommendations for beam control in ultra-dense millimeter-wave radio access networks of the fifth and subsequent generations.

  2. Aksenov A.A., Zhluktov S.V., Kalugina M.D., Kashirin V.S., Lobanov A.I., Shaurman D.V.
    Reduced mathematical model of blood coagulation taking into account thrombin activity switching as a basis for estimation of hemodynamic effects and its implementation in FlowVision package
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 1039-1067

    The possibility of numerical 3D simulation of thrombi formation is considered.

    The developed up to now detailed mathematical models describing formation of thrombi and clots include a great number of equations. Being implemented in a CFD code, the detailed mathematical models require essential computer resources for simulation of the thrombi growth in a blood flow. A reasonable alternative way is using reduced mathematical models. Two models based on the reduced mathematical model for the thrombin generation are described in the given paper.

    The first model describes growth of a thrombus in a great vessel (artery). The artery flows are essentially unsteady. They are characterized by pulse waves. The blood velocity here is high compared to that in the vein tree. The reduced model for the thrombin generation and the thrombus growth in an artery is relatively simple. The processes accompanying the thrombin generation in arteries are well described by the zero-order approximation.

    A vein flow is characterized lower velocity value, lower gradients, and lower shear stresses. In order to simulate the thrombin generation in veins, a more complex system of equations has to be solved. The model must allow for all the non-linear terms in the right-hand sides of the equations.

    The simulation is carried out in the industrial software FlowVision.

    The performed numerical investigations have shown the suitability of the reduced models for simulation of thrombin generation and thrombus growth. The calculations demonstrate formation of the recirculation zone behind a thrombus. The concentration of thrombin and the mass fraction of activated platelets are maximum here. Formation of such a zone causes slow growth of the thrombus downstream. At the upwind part of the thrombus, the concentration of activated platelets is low, and the upstream thrombus growth is negligible.

    When the blood flow variation during a hart cycle is taken into account, the thrombus growth proceeds substantially slower compared to the results obtained under the assumption of constant (averaged over a hard cycle) conditions. Thrombin and activated platelets produced during diastole are quickly carried away by the blood flow during systole. Account of non-Newtonian rheology of blood noticeably affects the results.

  3. Vassilevski Y.V., Simakov S.S., Gamilov T.M., Salamatova V.Yu., Dobroserdova T.K., Kopytov G.V., Bogdanov O.N., Danilov A.A., Dergachev M.A., Dobrovolskii D.D., Kosukhin O.N., Larina E.V., Meleshkina A.V., Mychka E.Yu., Kharin V.Yu., Chesnokova K.V., Shipilov A.A.
    Personalization of mathematical models in cardiology: obstacles and perspectives
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 911-930

    Most biomechanical tasks of interest to clinicians can be solved only using personalized mathematical models. Such models allow to formalize and relate key pathophysiological processes, basing on clinically available data evaluate non-measurable parameters that are important for the diagnosis of diseases, predict the result of a therapeutic or surgical intervention. The use of models in clinical practice imposes additional restrictions: clinicians require model validation on clinical cases, the speed and automation of the entire calculated technological chain, from processing input data to obtaining a result. Limitations on the simulation time, determined by the time of making a medical decision (of the order of several minutes), imply the use of reduction methods that correctly describe the processes under study within the framework of reduced models or machine learning tools.

    Personalization of models requires patient-oriented parameters, personalized geometry of a computational domain and generation of a computational mesh. Model parameters are estimated by direct measurements, or methods of solving inverse problems, or methods of machine learning. The requirement of personalization imposes severe restrictions on the number of fitted parameters that can be measured under standard clinical conditions. In addition to parameters, the model operates with boundary conditions that must take into account the patient’s characteristics. Methods for setting personalized boundary conditions significantly depend on the clinical setting of the problem and clinical data. Building a personalized computational domain through segmentation of medical images and generation of the computational grid, as a rule, takes a lot of time and effort due to manual or semi-automatic operations. Development of automated methods for setting personalized boundary conditions and segmentation of medical images with the subsequent construction of a computational grid is the key to the widespread use of mathematical modeling in clinical practice.

    The aim of this work is to review our solutions for personalization of mathematical models within the framework of three tasks of clinical cardiology: virtual assessment of hemodynamic significance of coronary artery stenosis, calculation of global blood flow after hemodynamic correction of complex heart defects, calculating characteristics of coaptation of reconstructed aortic valve.

  4. Khavinson M.J., Losev A.S., Kulakov M.P.
    Modeling the number of employed, unemployed and economically inactive population in the Russian Far East
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 251-264

    Studies of the crisis socio-demographic situation in the Russian Far East require not only the use of traditional statistical methods, but also a conceptual analysis of possible development scenarios based on the synergy principles. The article is devoted to the analysis and modeling of the number of employed, unemployed and economically inactive population using nonlinear autonomous differential equations. We studied a basic mathematical model that takes into account the principle of pair interactions, which is a special case of the model for the struggle between conditional information of D. S. Chernavsky. The point estimates for the parameters are found using least squares method adapted for this model. The average approximation error was no more than 5.17%. The calculated parameter values correspond to the unstable focus and the oscillations with increasing amplitude of population number in the asymptotic case, which indicates a gradual increase in disparities between the employed, unemployed and economically inactive population and a collapse of their dynamics. We found that in the parametric space, not far from the inertial scenario, there are domains of blow-up and chaotic regimes complicating the ability to effectively manage. The numerical study showed that a change in only one model parameter (e.g. migration) without complex structural socio-economic changes can only delay the collapse of the dynamics in the long term or leads to the emergence of unpredictable chaotic regimes. We found an additional set of the model parameters corresponding to sustainable dynamics (stable focus) which approximates well the time series of the considered population groups. In the mathematical model, the bifurcation parameters are the outflow rate of the able-bodied population, the fertility (“rejuvenation of the population”), as well as the migration inflow rate of the unemployed. We found that the transition to stable regimes is possible with the simultaneous impact on several parameters which requires a comprehensive set of measures to consolidate the population in the Russian Far East and increase the level of income in terms of compensation for infrastructure sparseness. Further economic and sociological research is required to develop specific state policy measures.

  5. Andreeva A.A., Anand M., Lobanov A.I., Nikolaev A.V., Panteleev M.A.
    Using extended ODE systems to investigate the mathematical model of the blood coagulation
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 931-951

    Many properties of ordinary differential equations systems solutions are determined by the properties of the equations in variations. An ODE system, which includes both the original nonlinear system and the equations in variations, will be called an extended system further. When studying the properties of the Cauchy problem for the systems of ordinary differential equations, the transition to extended systems allows one to study many subtle properties of solutions. For example, the transition to the extended system allows one to increase the order of approximation for numerical methods, gives the approaches to constructing a sensitivity function without using numerical differentiation procedures, allows to use methods of increased convergence order for the inverse problem solution. Authors used the Broyden method belonging to the class of quasi-Newtonian methods. The Rosenbroke method with complex coefficients was used to solve the stiff systems of the ordinary differential equations. In our case, it is equivalent to the second order approximation method for the extended system.

    As an example of the proposed approach, several related mathematical models of the blood coagulation process were considered. Based on the analysis of the numerical calculations results, the conclusion was drawn that it is necessary to include a description of the factor XI positive feedback loop in the model equations system. Estimates of some reaction constants based on the numerical inverse problem solution were given.

    Effect of factor V release on platelet activation was considered. The modification of the mathematical model allowed to achieve quantitative correspondence in the dynamics of the thrombin production with experimental data for an artificial system. Based on the sensitivity analysis, the hypothesis tested that there is no influence of the lipid membrane composition (the number of sites for various factors of the clotting system, except for thrombin sites) on the dynamics of the process.

Pages: « first previous

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"