All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Benchmarking of CEA FlowVision in ship flow simulation
Computer Research and Modeling, 2014, v. 6, no. 6, pp. 889-899Views (last year): 1. Citations: 5 (RSCI).In the field of naval architecture the most competent recommendations in verification and validation of the numerical methods were developed within an international workshop on the numerical prediction of ship viscous flow which is held every five years in Gothenburg (Sweden) and Tokyo (Japan) alternately. In the workshop “Gothenburg–2000” three modern hull forms with reliable experimental data were introduced as test cases. The most general case among them is a containership KCS, a ship of moderate specific speed and fullness. The paper focuses on a numerical research of KCS hull flow, which was made according to the formal procedures of the workshop with the help of CEA FlowVision. Findings were compared with experimental data and computational data of other key CEA.
-
Analytical solution and computer simulation of the task of Rician distribution’s parameters in limiting cases of large and small values of signal-to-noise ratio
Computer Research and Modeling, 2015, v. 7, no. 2, pp. 227-242Views (last year): 2.The paper provides a solution of a task of calculating the parameters of a Rician distributed signal on the basis of the maximum likelihood principle in limiting cases of large and small values of the signal-tonoise ratio. The analytical formulas are obtained for the solution of the maximum likelihood equations’ system for the required signal and noise parameters for both the one-parameter approximation, when only one parameter is being calculated on the assumption that the second one is known a-priori, and for the two-parameter task, when both parameters are a-priori unknown. The direct calculation of required signal and noise parameters by formulas allows escaping the necessity of time resource consuming numerical solving the nonlinear equations’ s system and thus optimizing the duration of computer processing of signals and images. There are presented the results of computer simulation of a task confirming the theoretical conclusions. The task is meaningful for the purposes of Rician data processing, in particular, magnetic-resonance visualization.
-
Procedure for constructing of explicit, implicit and symmetric simplectic schemes for numerical solving of Hamiltonian systems of equations
Computer Research and Modeling, 2016, v. 8, no. 6, pp. 861-871Views (last year): 11.Equations of motion in Newtonian and Hamiltonian forms are used for classical molecular dynamics simulation of particle system time evolution. When Newton equations of motion are used for finding of particle coordinates and velocities in $N$-particle system it takes to solve $3N$ ordinary differential equations of second order at every time step. Traditionally numerical schemes of Verlet method are used for solving Newtonian equations of motion of molecular dynamics. A step of integration is necessary to decrease for Verlet numerical schemes steadiness conservation on sufficiently large time intervals. It leads to a significant increase of the volume of calculations. Numerical schemes of Verlet method with Hamiltonian conservation control (the energy of the system) at every time moment are used in the most software packages of molecular dynamics for numerical integration of equations of motion. It can be used two complement each other approaches to decrease of computational time in molecular dynamics calculations. The first of these approaches is based on enhancement and software optimization of existing software packages of molecular dynamics by using of vectorization, parallelization and special processor construction. The second one is based on the elaboration of efficient methods for numerical integration for equations of motion. A procedure for constructing of explicit, implicit and symmetric symplectic numerical schemes with given approximation accuracy in relation to integration step for solving of molecular dynamic equations of motion in Hamiltonian form is proposed in this work. The approach for construction of proposed in this work procedure is based on the following points: Hamiltonian formulation of equations of motion; usage of Taylor expansion of exact solution; usage of generating functions, for geometrical properties of exact solution conservation, in derivation of numerical schemes. Numerical experiments show that obtained in this work symmetric symplectic third-order accuracy scheme conserves basic properties of the exact solution in the approximate solution. It is more stable for approximation step and conserves Hamiltonian of the system with more accuracy at a large integration interval then second order Verlet numerical schemes.
-
Verification of calculated characteristics of supersonic turbulent jets
Computer Research and Modeling, 2017, v. 9, no. 1, pp. 21-35Views (last year): 43.Verification results of supersonic turbulent jets computational characteristics are presented. Numerical simulation of axisymmetric nozzle operating is realized using FlowVision CFD. Open test cases for CFD are used. The test cases include Seiner tests with exit Mach number of 2.0 both fully-expanded and under-expanded $(P/P_0 = 1.47)$. Fully-expanded nozzle investigated with wide range of flow temperature (300…3000 K). The considered studies include simulation downstream from the nozzle exit diameter. Next numerical investigation is presented at an exit Mach number of 2.02 and a free-stream Mach number of 2.2. Geometric model of convergent- divergent nozzle rebuilt from original Putnam experiment. This study is set with nozzle pressure ratio of 8.12 and total temperature of 317 K.
The paper provides a comparison of obtained FlowVision results with experimental data and another current CFD studies. A comparison of the calculated characteristics and experimental data indicates a good agreement. The best coincidence with Seiner's experimental velocity distribution (about 7 % at far field for the first case) obtained using two-equation $k–\varepsilon$ standard turbulence model with Wilcox compressibility correction. Predicted Mach number distribution at $Y/D = 1$ for Putnam nozzle presents accuracy of 3 %.
General guidelines for simulation of supersonic turbulent jets in the FlowVision software are formulated in the given paper. Grid convergence determined the optimal cell rate. In order to calculate the design regime, it is recommended to build a grid, containing not less than 40 cells from the axis of symmetry to the nozzle wall. In order to calculate an off-design regime, it is necessary to resolve the shock waves. For this purpose, not less than 80 cells is required in the radial direction. Investigation of the influence of turbulence model on the flow characteristics has shown that the version of the SST $k–\omega$ turbulence model implemented in the FlowVision software essentially underpredicts the axial velocity. The standard $k–\varepsilon$ model without compressibility correction also underpredicts the axial velocity. These calculations agree well with calculations in other CFD codes using the standard $k–\varepsilon$ model. The in-home $k–\varepsilon$ turbulence model KEFV with compressibility correction a little bit overpredicts the axial velocity. Since, the best results are obtained using the standard $k–\varepsilon$ model combined with the Wilcox compressibility correction, this model is recommended for the problems discussed.
The developed methodology can be regarded as a basis for numerical investigations of more complex nozzle flows.
-
Comparative analysis of finite difference method and finite volume method for unsteady natural convection and thermal radiation in a cubical cavity filled with a diathermic medium
Computer Research and Modeling, 2017, v. 9, no. 4, pp. 567-578Views (last year): 13. Citations: 1 (RSCI).Comparative analysis of two numerical methods for simulation of unsteady natural convection and thermal surface radiation within a differentially heated cubical cavity has been carried out. The considered domain of interest had two isothermal opposite vertical faces, while other walls are adiabatic. The walls surfaces were diffuse and gray, namely, their directional spectral emissivity and absorptance do not depend on direction or wavelength but can depend on surface temperature. For the reflected radiation we had two approaches such as: 1) the reflected radiation is diffuse, namely, an intensity of the reflected radiation in any point of the surface is uniform for all directions; 2) the reflected radiation is uniform for each surface of the considered enclosure. Mathematical models formulated both in primitive variables “velocity–pressure” and in transformed variables “vector potential functions – vorticity vector” have been performed numerically using finite volume method and finite difference methods, respectively. It should be noted that radiative heat transfer has been analyzed using the net-radiation method in Poljak approach.
Using primitive variables and finite volume method for the considered boundary-value problem we applied power-law for an approximation of convective terms and central differences for an approximation of diffusive terms. The difference motion and energy equations have been solved using iterative method of alternating directions. Definition of the pressure field associated with velocity field has been performed using SIMPLE procedure.
Using transformed variables and finite difference method for the considered boundary-value problem we applied monotonic Samarsky scheme for convective terms and central differences for diffusive terms. Parabolic equations have been solved using locally one-dimensional Samarsky scheme. Discretization of elliptic equations for vector potential functions has been conducted using symmetric approximation of the second-order derivatives. Obtained difference equation has been solved by successive over-relaxation method. Optimal value of the relaxation parameter has been found on the basis of computational experiments.
As a result we have found the similar distributions of velocity and temperature in the case of these two approaches for different values of Rayleigh number, that illustrates an operability of the used techniques. The efficiency of transformed variables with finite difference method for unsteady problems has been shown.
-
Simulation of flight and destruction of the Benešov bolid
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 605-618Views (last year): 24. Citations: 1 (RSCI).Comets and asteroids are recognized by the scientists and the governments of all countries in the world to be one of the most significant threats to the development and even the existence of our civilization. Preventing this threat includes studying the motion of large meteors through the atmosphere that is accompanied by various physical and chemical phenomena. Of particular interest to such studies are the meteors whose trajectories have been recorded and whose fragments have been found on Earth. Here, we study one of such cases. We develop a model for the motion and destruction of natural bodies in the Earth’s atmosphere, focusing on the Benešov bolid (EN070591), a bright meteor registered in 1991 in the Czech Republic by the European Observation System. Unique data, that includes the radiation spectra, is available for this bolid. We simulate the aeroballistics of the Benešov meteoroid and of its fragments, taking into account destruction due to thermal and mechanical processes. We compute the velocity of the meteoroid and its mass ablation using the equations of the classical theory of meteor motion, taking into account the variability of the mass ablation along the trajectory. The fragmentation of the meteoroid is considered using the model of sequential splitting and the statistical stress theory, that takes into account the dependency of the mechanical strength on the length scale. We compute air flows around a system of bodies (shards of the meteoroid) in the regime where mutual interplay between them is essential. To that end, we develop a method of simulating air flows based on a set of grids that allows us to consider fragments of various shapes, sizes, and masses, as well as arbitrary positions of the fragments relative to each other. Due to inaccuracies in the early simulations of the motion of this bolid, its fragments could not be located for about 23 years. Later and more accurate simulations have allowed researchers to locate four of its fragments rather far from the location expected earlier. Our simulations of the motion and destruction of the Benešov bolid show that its interaction with the atmosphere is affected by multiple factors, such as the mass and the mechanical strength of the bolid, the parameters of its motion, the mechanisms of destruction, and the interplay between its fragments.
-
Equilibrium states of the second kind of the Kuramoto – Sivashinsky equation with the homogeneous Neumann boundary conditions
Computer Research and Modeling, 2019, v. 11, no. 1, pp. 59-69Views (last year): 27.The well-known evolutionary equation of mathematical physics, which in modern mathematical literature is called the Kuramoto – Sivashinsky equation, is considered. In this paper, this equation is studied in the original edition of the authors, where it was proposed, together with the homogeneous Neumann boundary conditions.
The question of the existence and stability of local attractors formed by spatially inhomogeneous solutions of the boundary value problem under study has been studied. This issue has become particularly relevant recently in connection with the simulation of the formation of nanostructures on the surface of semiconductors under the influence of an ion flux or laser radiation. The question of the existence and stability of second-order equilibrium states has been studied in two different ways. In the first of these, the Galerkin method was used. The second approach is based on using strictly grounded methods of the theory of dynamic systems with infinite-dimensional phase space: the method of integral manifolds, the theory of normal forms, asymptotic methods.
In the work, in general, the approach from the well-known work of D.Armbruster, D.Guckenheimer, F.Holmes is repeated, where the approach based on the application of the Galerkin method is used. The results of this analysis are substantially supplemented and developed. Using the capabilities of modern computers has helped significantly complement the analysis of this task. In particular, to find all the solutions in the fourand five-term Galerkin approximations, which for the studied boundary-value problem should be interpreted as equilibrium states of the second kind. An analysis of their stability in the sense of A. M. Lyapunov’s definition is also given.
In this paper, we compare the results obtained using the Galerkin method with the results of a bifurcation analysis of a boundary value problem based on the use of qualitative analysis methods for infinite-dimensional dynamic systems. Comparison of two variants of results showed some limited possibilities of using the Galerkin method.
-
The purposeful transformation of mathematical models based on strategic reflection
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 815-831The study of complex processes in various spheres of human activity is traditionally based on the use of mathematical models. In modern conditions, the development and application of such models is greatly simplified by the presence of high-speed computer equipment and specialized tools that allow, in fact, designing models from pre-prepared modules. Despite this, the known problems associated with ensuring the adequacy of the model, the reliability of the original data, the implementation in practice of the simulation results, the excessively large dimension of the original data, the joint application of sufficiency heterogeneous mathematical models in terms of complexity and integration of the simulated processes are becoming increasingly important. The more critical may be the external constraints imposed on the value of the optimized functional, and often unattainable within the framework of the constructed model. It is logical to assume that in order to fulfill these restrictions, a purposeful transformation of the original model is necessary, that is, the transition to a mathematical model with a deliberately improved solution. The new model will obviously have a different internal structure (a set of parameters and their interrelations), as well as other formats (areas of definition) of the source data. The possibilities of purposeful change of the initial model investigated by the authors are based on the realization of the idea of strategic reflection. The most difficult in mathematical terms practical implementation of the author's idea is the use of simulation models, for which the algorithms for finding optimal solutions have known limitations, and the study of sensitivity in most cases is very difficult. On the example of consideration of rather standard discrete- event simulation model the article presents typical methodological techniques that allow ranking variable parameters by sensitivity and, in the future, to expand the scope of definition of variable parameter to which the simulation model is most sensitive. In the transition to the “improved” model, it is also possible to simultaneously exclude parameters from it, the influence of which on the optimized functional is insignificant, and vice versa — the introduction of new parameters corresponding to real processes into the model.
-
Methodical questions of numerical simulation of external flows on locally-adaptive grids using wall functions
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1269-1290The work is dedicated to investigation of possibility to increase the efficiency of solving external aerodynamic problems. Methodical questions of using locally-adaptive grids and wall functions for numerical simulation of turbulent flows past flying vehicles are studied. Reynolds-averaged Navier–Stokes equations are integrated. The equations are closed by standard $k–\varepsilon$ turbulence model. Subsonic turbulent flow of perfect compressible viscous gas past airfoil RAE 2822 is considered. Calculations are performed in CFD software FlowVision. The efficiency of using the technology of smoothing diffusion fluxes and the Bradshaw formula for turbulent viscosity is analyzed. These techniques are regarded as means of increasing the accuracy of solving aerodynamic problems on locally-adaptive grids. The obtained results show that using the technology of smoothing diffusion fluxes essentially decreases the discrepancy between computed and experimental values of the drag coefficient. In addition, the distribution of the skin friction coefficient over the curvilinear surface of the airfoil becomes more regular. These results indicate that the given technology is an effective way to increase the accuracy of calculations on locally-adaptive grids. The Bradshaw formula for the dynamic coefficient of turbulent viscosity is traditionally used in the SST $k–\omega$ turbulence model. The possibility to implement it in the standard $k–\varepsilon$ turbulence model is investigated in the present article. The calculations show that this formula provides good agreement of integral aerodynamic characteristics and the distribution of the pressure coefficient over the airfoil surface with experimental data. Besides that, it essentially augments the accuracy of simulation of the flow in the boundary layer and in the wake. On the other hand, using the Bradshaw formula in the simulation of the air flow past airfoil RAE 2822 leads to under-prediction of the skin friction coefficient. For this reason, the conclusion is made that practical use of the Bradshaw formula requires its preliminary validation and calibration on reliable experimental data available for the considered flows. The results of the work as a whole show that using the technologies discussed in numerical solution of external aerodynamic problems on locally-adaptive grids together with wall functions provides the computational accuracy acceptable for quick assessment of the aerodynamic characteristics of a flying vehicle. So, one can deduce that the FlowVision software is an effective tool for preliminary design studies, for conceptual design, and for aerodynamic shape optimization.
-
Simulation of unsteady structure of flow over descent module in the Martian atmosphere conditions
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 701-714The article presents the results of numerical modeling of the vortex spatial non-stationary motion of the medium arising near the lateral and bottom surfaces of the descent module during its movement in the atmosphere of Mars. The numerical study was performed for the high-speed streamline regime at various angles of attack. Mathematical modeling was carried out on the basis of the Navier – Stokes model and the model of equilibrium chemical reactions for the Martian atmosphere gas. The simulation results showed that under the considered conditions of the descent module motion, a non-stationary flow with a pronounced vortex character is realized near its lateral and bottom surfaces. Numerical calculations indicate that, depending on the angle of attack, the nonstationarity and vortex nature of the flow can manifest itself both on the entire lateral and bottom surfaces of the module, and, partially, on their leeward side. For various angles of attack, pictures of the vortex structure of the flow near the surface of the descent vehicle and in its near wake are presented, as well as pictures of the gas-dynamic parameters fields. The non-stationary nature of the flow is confirmed by the presented time dependences of the gas-dynamic parameters of the flow at various points on the module surface. The carried out parametric calculations made it possible to determine the dependence of the aerodynamic characteristics of the descent module on the angle of attack. Mathematical modeling is carried out on the basis of the conservative numerical method of fluxes, which is a finitevolume method based on a finite-difference writing of the conservation laws of additive characteristics of the medium using «upwind» approximations of stream variables. To simulate the complex vortex structure of the flow over descent module, the nonuniform computational grids are used, including up to 30 million finite volumes with exponential thickening to the surface, which made it possible to reveal small-scale vortex formations. Numerical investigations were carried out on the basis of the developed software package based on parallel algorithms of the used numerical method and implemented on modern multiprocessor computer systems. The results of numerical simulation presented in the article were obtained using up to two thousand computing cores of a multiprocessor complex.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"