Результаты поиска по 'data model':
Найдено статей: 222
  1. Malovichko M.S., Petrov I.B.
    On numerical solution of joint inverse geophysical problems with structural constraints
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 329-343

    Inverse geophysical problems are difficult to solve due to their mathematically incorrect formulation and large computational complexity. Geophysical exploration in frontier areas is even more complicated due to the lack of reliable geological information. In this case, inversion methods that allow interpretation of several types of geophysical data together are recognized to be of major importance. This paper is dedicated to one of such inversion methods, which is based on minimization of the determinant of the Gram matrix for a set of model vectors. Within the framework of this approach, we minimize a nonlinear functional, which consists of squared norms of data residual of different types, the sum of stabilizing functionals and a term that measures the structural similarity between different model vectors. We apply this approach to seismic and electromagnetic synthetic data set. Specifically, we study joint inversion of acoustic pressure response together with controlled-source electrical field imposing structural constraints on resulting electrical conductivity and P-wave velocity distributions.

    We start off this note with the problem formulation and present the numerical method for inverse problem. We implemented the conjugate-gradient algorithm for non-linear optimization. The efficiency of our approach is demonstrated in numerical experiments, in which the true 3D electrical conductivity model was assumed to be known, but the velocity model was constructed during inversion of seismic data. The true velocity model was based on a simplified geology structure of a marine prospect. Synthetic seismic data was used as an input for our minimization algorithm. The resulting velocity model not only fit to the data but also has structural similarity with the given conductivity model. Our tests have shown that optimally chosen weight of the Gramian term may improve resolution of the final models considerably.

  2. Mikheyev P.V., Gorynin G.L., Borisova L.R.
    A modified model of the effect of stress concentration near a broken fiber on the tensile strength of high-strength composites (MLLS-6)
    Computer Research and Modeling, 2020, v. 12, no. 3, pp. 559-573

    The article proposes a model for assessing the potential strength of a composite material based on modern fibers with brittle fracture.

    Materials consisting of parallel cylindrical fibers that are quasi-statically stretched in one direction are simulated. It is assumed that the sample is not less than 100 pieces, which corresponds to almost significant cases. It is known that the fibers have a distribution of ultimate deformation in the sample and are not destroyed at the same moment. Usually the distribution of their properties is described by the Weibull–Gnedenko statistical distribution. To simulate the strength of the composite, a model of fiber breaks accumulation is used. It is assumed that the fibers united by the polymer matrix are crushed to twice the inefficient length — the distance at which the stresses increase from the end of the broken fiber to the middle one. However, this model greatly overestimates the strength of composites with brittle fibers. For example, carbon and glass fibers are destroyed in this way.

    In some cases, earlier attempts were made to take into account the stress concentration near the broken fiber (Hedgepest model, Ermolenko model, shear analysis), but such models either required a lot of initial data or did not coincide with the experiment. In addition, such models idealize the packing of fibers in the composite to the regular hexagonal packing.

    The model combines the shear analysis approach to stress distribution near the destroyed fiber and the statistical approach of fiber strength based on the Weibull–Gnedenko distribution, while introducing a number of assumptions that simplify the calculation without loss of accuracy.

    It is assumed that the stress concentration on the adjacent fiber increases the probability of its destruction in accordance with the Weibull distribution, and the number of such fibers with an increased probability of destruction is directly related to the number already destroyed before. All initial data can be obtained from simple experiments. It is shown that accounting for redistribution only for the nearest fibers gives an accurate forecast.

    This allowed a complete calculation of the strength of the composite. The experimental data obtained by us on carbon fibers, glass fibers and model composites based on them (CFRP, GFRP), confirm some of the conclusions of the model.

  3. Kotliarova E.V., Gasnikov A.V., Gasnikova E.V., Yarmoshik D.V.
    Finding equilibrium in two-stage traffic assignment model
    Computer Research and Modeling, 2021, v. 13, no. 2, pp. 365-379

    Authors describe a two-stage traffic assignment model. It contains of two blocks. The first block consists of a model for calculating a correspondence (demand) matrix, whereas the second block is a traffic assignment model. The first model calculates a matrix of correspondences using a matrix of transport costs (it characterizes the required volumes of movement from one area to another, it is time in this case). To solve this problem, authors propose to use one of the most popular methods of calculating the correspondence matrix in urban studies — the entropy model. The second model describes exactly how the needs for displacement specified by the correspondence matrix are distributed along the possible paths. Knowing the ways of the flows distribution along the paths, it is possible to calculate the cost matrix. Equilibrium in a two-stage model is a fixed point in the sequence of these two models. In practice the problem of finding a fixed point can be solved by the fixed-point iteration method. Unfortunately, at the moment the issue of convergence and estimations of the convergence rate for this method has not been studied quite thoroughly. In addition, the numerical implementation of the algorithm results in many problems. In particular, if the starting point is incorrect, situations may arise where the algorithm requires extremely large numbers to be computed and exceeds the available memory even on the most modern computers. Therefore the article proposes a method for reducing the problem of finding the equilibrium to the problem of the convex non-smooth optimization. Also a numerical method for solving the obtained optimization problem is proposed. Numerical experiments were carried out for both methods of solving the problem. The authors used data for Vladivostok (for this city information from various sources was processed and collected in a new dataset) and two smaller cities in the USA. It was not possible to achieve convergence by the method of fixed-point iteration, whereas the second model for the same dataset demonstrated convergence rate $k^{-1.67}$.

  4. Nikulin A.S., ZHediaevskii D.N., Fedorova E.B.
    Applying artificial neural network for the selection of mixed refrigerant by boiling curve
    Computer Research and Modeling, 2022, v. 14, no. 3, pp. 593-608

    The paper provides a method for selecting the composition of a refrigerant with a given isobaric cooling curve using an artificial neural network (ANN). This method is based on the use of 1D layers of a convolutional neural network. To train the neural network, we applied a technological model of a simple heat exchanger in the UniSim design program, using the Peng – Robinson equation of state.We created synthetic database on isobaric boiling curves of refrigerants of different compositions using the technological model. To record the database, an algorithm was developed in the Python programming language, and information on isobaric boiling curves for 1 049 500 compositions was uploaded using the COM interface. The compositions have generated by Monte Carlo method. Designed architecture of ANN allows select composition of a mixed refrigerant by 101 points of boiling curve. ANN gives mole flows of mixed refrigerant by composition (methane, ethane, propane, nitrogen) on the output layer. For training ANN, we used method of cyclical learning rate. For results demonstration we selected MR composition by natural gas cooling curve with a minimum temperature drop of 3 К and a maximum temperature drop of no more than 10 К, which turn better than we predicted via UniSim SQP optimizer and better than predicted by $k$-nearest neighbors algorithm. A significant value of this article is the fact that an artificial neural network can be used to select the optimal composition of the refrigerant when analyzing the cooling curve of natural gas. This method can help engineers select the composition of the mixed refrigerant in real time, which will help reduce the energy consumption of natural gas liquefaction.

  5. Vetluzhsky A.Y.
    Analysis of the dispersion characteristics of metallic photonic crystals by the plane-wave expansion method
    Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1059-1068

    A method for studying the dispersion characteristics of photonic crystals — media with a dielectric constant that varies periodically in space — is considered. The method is based on the representation of the wave functions and permittivity of a periodic medium in the form of Fourier series and their subsequent substitution into the wave equation, which leads to the formulation of the dispersion equation. Using the latter, for each value of the wave vector it is possible determined a set of eigen frequencies. Each of eigen frequency forms a separate dispersion curve as a continuous function of the wave number. The Fourier expansion coefficients of the permittivity, which depend on the vectors of the reciprocal lattice of the photonic crystal, are determined on the basis of data on the geometric characteristics of the elements that form the crystal, their electrophysical properties and the density of the crystal. The solution of the dispersion equation found makes it possible to obtain complete information about the number of modes propagating in a periodic structure at different frequencies, and about the possibility of forming band gaps, i.e. frequency ranges within which wave propagation through a photonic crystal is impossible. The focus of this work is on the application of this method to the analysis of the dispersion properties of metallic photonic crystals. The difficulties that arise in this case due to the presence of intrinsic dispersion properties of the metals that form the elements of the crystal are overcome by an analytical description of their permittivity based on the model of free electrons. As a result, a dispersion equation is formulated, the numerical solution of which is easily algorithmized. That makes possible to determine the dispersion characteristics of metallic photonic crystals with arbitrary parameters. Obtained by this method the results of calculation of dispersion diagrams, which characterize two-dimensional metal photonic crystals, are compared with experimental data and numerical results obtained using the method of self-consistent equations. Their good agreement is demonstrated.

  6. Rusyak I.G., Tenenev V.A., Sufiyanov V.G., Klyukin D.A.
    Simulation of uneven combustion and stress-strain state of powder elements of a tubular charge during firing
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1281-1300

    The paper presents the physical and mathematical formulation of the problems of internal ballistics of an artillery shot for a charge consisting of a set of powder tubes and their stress-strain state. Combustion and movement of a bundle of powder tubes along the barrel channel is modeled by an equivalent tubular charge of all-round combustion. It is assumed that the equivalent tube moves along the axis of the bore. The speed of movement of an equivalent tubular charge and its current position are determined from Newton’s second law. When calculating the flow parameters, two-dimensional axisymmetric equations of gas dynamics were used, for the solution of which an axisymmetric orthogonalized difference grid is constructed, which adapts to the flow conditions. The control volume method is used to numerically solve the system of gas-dynamic equations. The gas parameters at the boundaries of the control volumes are determined using a self-similar solution to the Godunov’s problem of the decay of an arbitrary discontinuity. The stress-strain state is modeled for a separate burning powder tube located in the field of gas-dynamic parameters. The calculation of the gas-dynamic parameters of the shot is carried out without taking into account the deformed state of the powder elements. The behavior of powder elements during firing is considered under these conditions. The finite element method with the division of the calculation area into triangular elements is used to solve the problem of elasticity. In the process of powder tube burnout, the computational grid on each time layer of the dynamic problem is completely updated due to a change in the boundaries of the powder element due to combustion. The paper shows the time dependences of the parameters of the internal ballistics process and the stress-strain state of powder elements, as well as the distribution of the main parameters of the flow of combustion products at different points in time. It has been established that the tubular powder elements during the shot experience significant deformations, which must be taken into account when solving the basic problem of internal ballistics. The data obtained give an idea of the level of equivalent stresses acting at various points of the powder element. The results obtained indicate the relevance of the conjugate formulation of the problem of gas dynamics and the stress-strain state for charges consisting of tubular powders, since this allows a new approach to the design of tubular charges and opens up the possibility of determining the parameters on which the physics of the combustion process of gunpowder significantly depends, therefore, and the dynamics of the shot process.

  7. Fadeev I.D., Aksenov A.A., Dmitrieva I.V., Nizamutdinov V.R., Pakholkov V.V., Rogozhkin S.A., Sazonova M.L., Shepelev S.F.
    Development of a methodological approach and numerical simulation of thermal-hydraulic processes in the intermediate heat exchanger of a BN reactor
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 877-894

    The paper presents the results of three-dimensional numerical simulation of thermal-hydraulic processes in the Intermediate Heat Exchanger of the advanced Sodium-Cooled Fast-Neutron (BN) Reactor considering a developed methodological approach.

    The Intermediate Heat Exchanger (IHX) is located in the reactor vessel and intended to transfer heat from the primary sodium circulating on the shell side to the secondary sodium circulating on the tube side. In case of an integral layout of the primary equipment in the BN reactor, upstream the IHX inlet windows there is a temperature stratification of the coolant due to incomplete mixing of different temperature flows at the core outlet. Inside the IHX, in the area of the input and output windows, a complex longitudinal and transverse flow of the coolant also takes place resulting in an uneven distribution of the coolant flow rate on the tube side and, as a consequence, in an uneven temperature distribution and heat transfer efficiency along the height and radius of the tube bundle.

    In order to confirm the thermal-hydraulic parameters of the IHX of the advanced BN reactor applied in the design, a methodological approach for three-dimensional numerical simulation of the heat exchanger located in the reactor vessel was developed, taking into account the three-dimensional sodium flow pattern at the IHX inlet and inside the IHX, as well as justifying the recommendations for simplifying the geometry of the computational model of the IHX.

    Numerical simulation of thermal-hydraulic processes in the IHX of the advanced BN reactor was carried out using the FlowVision software package with the standard $k-\varepsilon$ turbulence model and the LMS turbulent heat transfer model.

    To increase the representativeness of numerical simulation of the IHX tube bundle, verification calculations of singletube and multi-tube sodium-sodium heat exchangers were performed with the geometric characteristics corresponding to the IHX design.

    To determine the input boundary conditions in the IHX model, an additional three-dimensional calculation was performed taking into account the uneven flow pattern in the upper mixing chamber of the reactor.

    The IHX computational model was optimized by simplifying spacer belts and selecting a sector model.

    As a result of numerical simulation of the IHX, the distributions of the primary sodium velocity and primary and secondary sodium temperature were obtained. Satisfactory agreement of the calculation results with the design data on integral parameters confirmed the adopted design thermal-hydraulic characteristics of the IHX of the advanced BN reactor.

  8. Kharitonskij P.V., Frolov A.M., Boev S.A.
    Modelling of interlayer magnetostatic energy in nanocrystal films
    Computer Research and Modeling, 2012, v. 4, no. 1, pp. 85-90

    The computation model of the interlayer magnetostatic energy and its contribution into the total magnetic energy of multilayer films has been proposed. The model has been used for the energy computation of three-layer Co/Cu/Co structure. The comparison of obtained theoretical results with experimental data has been allowed made an estimation of magnetostatic interaction influence on a value and a character of saturation field behavior for such structures.

    Views (last year): 3. Citations: 1 (RSCI).
  9. Moskalev P.V.
    Percolation modeling of hydraulic hysteresis in a porous media
    Computer Research and Modeling, 2014, v. 6, no. 4, pp. 543-558

    In this paper we consider various models of hydraulic hysteresis in invasive mercury porosimetry. For simulating the hydraulic hysteresis is used isotropic site percolation on three-dimensional square lattices with $(1,\,\pi)$-neighborhood. The relationship between the percolation model parameters and invasive porosimetry data is studied phenomenologically. The implementation of the percolation model is based on libraries SPSL and SECP, released under license GNU GPL-3 using the free programming language R.

    Views (last year): 3. Citations: 1 (RSCI).
  10. Izvekov O.Ya.
    Modeling of anisotropic strength using scalar damage parameter
    Computer Research and Modeling, 2014, v. 6, no. 6, pp. 937-942

    The paper discusses the possibility of modeling the strength anisotropy of layered elastic medium using a scalar damage parameter. Thermodynamically consistent constitutive equations are formulated. Using SIMULIA / Abaqus we numerically simulated the stretching and compression of the samples. The results of calculation using the proposed model are compared with the known experimental data from the literature and the predictions of traditional models.

    Views (last year): 1.
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"