All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Methodical questions of numerical simulation of external flows on locally-adaptive grids using wall functions
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1269-1290The work is dedicated to investigation of possibility to increase the efficiency of solving external aerodynamic problems. Methodical questions of using locally-adaptive grids and wall functions for numerical simulation of turbulent flows past flying vehicles are studied. Reynolds-averaged Navier–Stokes equations are integrated. The equations are closed by standard $k–\varepsilon$ turbulence model. Subsonic turbulent flow of perfect compressible viscous gas past airfoil RAE 2822 is considered. Calculations are performed in CFD software FlowVision. The efficiency of using the technology of smoothing diffusion fluxes and the Bradshaw formula for turbulent viscosity is analyzed. These techniques are regarded as means of increasing the accuracy of solving aerodynamic problems on locally-adaptive grids. The obtained results show that using the technology of smoothing diffusion fluxes essentially decreases the discrepancy between computed and experimental values of the drag coefficient. In addition, the distribution of the skin friction coefficient over the curvilinear surface of the airfoil becomes more regular. These results indicate that the given technology is an effective way to increase the accuracy of calculations on locally-adaptive grids. The Bradshaw formula for the dynamic coefficient of turbulent viscosity is traditionally used in the SST $k–\omega$ turbulence model. The possibility to implement it in the standard $k–\varepsilon$ turbulence model is investigated in the present article. The calculations show that this formula provides good agreement of integral aerodynamic characteristics and the distribution of the pressure coefficient over the airfoil surface with experimental data. Besides that, it essentially augments the accuracy of simulation of the flow in the boundary layer and in the wake. On the other hand, using the Bradshaw formula in the simulation of the air flow past airfoil RAE 2822 leads to under-prediction of the skin friction coefficient. For this reason, the conclusion is made that practical use of the Bradshaw formula requires its preliminary validation and calibration on reliable experimental data available for the considered flows. The results of the work as a whole show that using the technologies discussed in numerical solution of external aerodynamic problems on locally-adaptive grids together with wall functions provides the computational accuracy acceptable for quick assessment of the aerodynamic characteristics of a flying vehicle. So, one can deduce that the FlowVision software is an effective tool for preliminary design studies, for conceptual design, and for aerodynamic shape optimization.
-
Numerical simulation of flow in a two-dimensional flat diffuser based on two fluid turbulence models
Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1149-1160The article presents the results of a numerical study of the flow structure in a two-dimensional flat diffuser. A feature of diffusers is that they have a complex anisotropic turbulent flow, which occurs due to recirculation flows. The turbulent RANS models, which are based on the Boussinesq hypothesis, are not able to describe the flow in diffusers with sufficient accuracy. Because the Boussinesq hypothesis is based on isotropic turbulence. Therefore, to calculate anisotropic turbulent flows, models are used that do not use this hypothesis. One of such directions in turbulence modeling is the methods of Reynolds stresses. These methods are complex and require rather large computational resources. In this work, a relatively recently developed two-fluid turbulence model was used to study the flow in a flat diffuser. This model is developed on the basis of a two-fluid approach to the problem of turbulence. In contrast to the Reynolds approach, the two-fluid approach allows one to obtain a closed system of turbulence equations using the dynamics of two fluids. Consequently, if empirical equations are used in RANS models for closure, then in the two-fluid model the equations used are exact equations of dynamics. One of the main advantages of the two-fluid model is that it is capable of describing complex anisotropic turbulent flows. In this work, the obtained numerical results for the profiles of the longitudinal velocity, turbulent stresses in various sections of the channel, as well as the friction coefficient are compared with the known experimental data. To demonstrate the advantages of the used turbulence model, the numerical results of the Reynolds stress method EARSM are also presented. For the numerical implementation of the systems of equations of the two-fluid model, a non-stationary system of equations was used, the solution of which asymptotically approached the stationary solution. For this purpose, a finite-difference scheme was used, where the viscosity terms were approximated by the central difference implicitly, and for the convective terms, an explicit scheme against the flow of the second order of accuracy was used. The results are obtained for the Reynolds number Re = 20 000. It is shown that the two-fluid model, despite the use of a uniform computational grid without thickening near the walls, is capable of giving a more accurate solution than the rather complex Reynolds stress method with a high resolution of computational grids.
-
Hybrid grid method for external and internal gas dynamics
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 543-565Based on the modeling method using a mesh system, an algorithm is implemented for solving a unsteady problem with moving bodies The algorithm takes into account the movement and rotation of bodies according to a given law of motion. The algorithm is applied to analysis the flow around an infinite composed of cylinders with an elliptical cross-section, which either move across the flow or rotate with a change in the angle of attack. To simulate the flow of bodies with a sharp edge, characteristic of the profiles of gas turbine machines, an algorithm for constructing a mesh of type C with the inclusion of a certain area behind the profile is implemented. The program for modeling the flow near the profile is implemented within the framework of models of Euler equations, Navier – Stokes equations in the approximation of a thin layer with laminar viscosity and turbulent viscosity in the framework of an algebraic viscosity model. The program has also been adapted to solve the problems of internal gas dynamics of turbomachines. For this purpose, the method of setting the boundary conditions at the entrance and exit from the calculated area from the velocity to the pressure drop, as well as at the lateral boundaries from the free flow to the periodicity, was changed. This made it possible to simulate the flow of gas in the inter-blade channels of compressors and turbines of gas turbine engines. To refine the algorithm, a series of calculations of the aerodynamic parameters of several turbine cascades in various subsonic and supersonic modes and their comparison with the experiment were carried out. Calculations of turbine grating parameters were carried out within the framework of the inviscid and viscous gas model. The calculation and experiment were compared by the distribution of gas parameters near the profile, as well as by the energy losses of the flow in the cascade. Calculations have shown the applicability and correctness of the program to solve this class of problems. To test the program on the problems of external subsonic aerodynamics, calculations of the aerodynamic characteristics of an isolated airfoil in an undisturbed flow were performed. The results obtained allow us to assert the applicability of the hybrid grid method to various classes of problems of applied gas dynamics.
-
Electric field effects in chemical patterns
Computer Research and Modeling, 2014, v. 6, no. 5, pp. 705-718Views (last year): 8.Excitation waves are a prototype of self-organized dynamic patterns in non-equilibrium systems. They develop their own intrinsic dynamics resulting in travelling waves of various forms and shapes. Prominent examples are rotating spirals and scroll waves. It is an interesting and challenging task to find ways to control their behavior by applying external signals, upon which these propagating waves react. We apply external electric fields to such waves in the excitable Belousov–Zhabotinsky (BZ) reaction. Remarkable effects include the change of wave speed, reversal of propagation direction, annihilation of counter-rotating spiral waves and reorientation of scroll wave filaments. These effects can be explained in numerical simulations, where the negatively charged inhibitor bromide plays an essential role. Electric field effects have also been investigated in biological excitable media such as the social amoebae Dictyostelium discoideum. Quite recently we have started to investigate electric field effect in the BZ reaction dissolved in an Aerosol OT water-in-oil microemulsion. A drift of complex patterns can be observed, and also the viscosity and electric conductivity change. We discuss the assumption that this system can act as a model for long range communication between neurons.
-
Algorithms of through calculation for damage processes
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 645-666Views (last year): 24.The paper reviews the existing approaches to calculating the destruction of solids. The main attention is paid to algorithms using a unified approach to the calculation of deformation both for nondestructive and for the destroyed states of the material. The thermodynamic derivation of the unified rheological relationships taking into account the elastic, viscous and plastic properties of materials and describing the loss of the deformation resistance ability with the accumulation of microdamages is presented. It is shown that the mathematical model under consideration provides a continuous dependence of the solution on input parameters (parameters of the material medium, initial and boundary conditions, discretization parameters) with softening of the material.
Explicit and implicit non-matrix algorithms for calculating the evolution of deformation and fracture development are presented. Non-explicit schemes are implemented using iterations of the conjugate gradient method, with the calculation of each iteration exactly coinciding with the calculation of the time step for two-layer explicit schemes. So, the solution algorithms are very simple.
The results of solving typical problems of destruction of solid deformable bodies for slow (quasistatic) and fast (dynamic) deformation processes are presented. Based on the experience of calculations, recommendations are given for modeling the processes of destruction and ensuring the reliability of numerical solutions.
-
Modelling hydroelastic response of a plate resting on a nonlinear foundation and interacting with a pulsating fluid layer
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 581-597The paper formulates a mathematical model for hydroelastic oscillations of a plate resting on a nonlinear hardening elastic foundation and interacting with a pulsating fluid layer. The main feature of the proposed model, unlike the wellknown ones, is the joint consideration of the elastic properties of the plate, the nonlinearity of elastic foundation, as well as the dissipative properties of the fluid and the inertia of its motion. The model is represented by a system of equations for a twodimensional hydroelasticity problem including dynamics equation of Kirchhoff’s plate resting on the elastic foundation with hardening cubic nonlinearity, Navier – Stokes equations, and continuity equation. This system is supplemented by boundary conditions for plate deflections and fluid pressure at plate ends, as well as for fluid velocities at the bounding walls. The model was investigated by perturbation method with subsequent use of iteration method for the equations of thin layer of viscous fluid. As a result, the fluid pressure distribution at the plate surface was obtained and the transition to an integrodifferential equation describing bending hydroelastic oscillations of the plate is performed. This equation is solved by the Bubnov –Galerkin method using the harmonic balance method to determine the primary hydroelastic response of the plate and phase response due to the given harmonic law of fluid pressure pulsation at plate ends. It is shown that the original problem can be reduced to the study of the generalized Duffing equation, in which the coefficients at inertial, dissipative and stiffness terms are determined by the physical and mechanical parameters of the original system. The primary hydroelastic response and phases response for the plate are found. The numerical study of these responses is performed for the cases of considering the inertia of fluid motion and the creeping fluid motion for the nonlinear and linearly elastic foundation of the plate. The results of the calculations showed the need to jointly consider the viscosity and inertia of the fluid motion together with the elastic properties of the plate and its foundation, both for nonlinear and linear vibrations of the plate.
-
Modeling of a channel wall interaction with an end seal flexibly restrained at the edge
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 387-400The paper proposes a new mathematical model to study the interaction dynamics of the longitudinal wall of a narrow channel with its end seal. The end seal was considered as the edge wall on a spring, i.e. spring-mass system. These walls interaction occurs via a viscous liquid filling the narrow channel; thus required the formulation and solution of the hydroelasticity problem. However, this problem has not been previously studied. The problem consists of the Navier–Stokes equations, the continuity equation, the edge wall dynamics equation, and the corresponding boundary conditions. Two cases of fluid motion in a narrow channel with parallel walls were studied. In the first case, we assumed the liquid motion as the creeping one, and in the second case as the laminar, taking into account the motion inertia. The hydroelasticty problem solution made it possible to determine the distribution laws of velocities and pressure in the liquid layer, as well as the motion law of the edge wall. It is shown that during creeping flow, the liquid physical properties and the channel geometric dimensions completely determine the damping in the considered oscillatory system. Both the end wall velocity and the longitudinal wall velocity affect the damping properties of the liquid layer. If the fluid motion inertia forces were taken into account, their influence on the edge wall vibrations was revealed, which manifested itself in the form of two added masses in the equation of its motion. The added masses and damping coefficients of the liquid layer due to the joint consideration of the liquid layer inertia and its viscosity were determined. The frequency and phase responses of the edge wall were constructed for the regime of steady-state harmonic oscillations. The simulation showed that taking into account the fluid layer inertia and its damping properties leads to a shift in the resonant frequencies to the low-frequency region and an increase in the oscillation amplitudes of the edge wall.
-
Modeling of rheological characteristics of aqueous suspensions based on nanoscale silicon dioxide particles
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1217-1252The rheological behavior of aqueous suspensions based on nanoscale silicon dioxide particles strongly depends on the dynamic viscosity, which affects directly the use of nanofluids. The purpose of this work is to develop and validate models for predicting dynamic viscosity from independent input parameters: silicon dioxide concentration SiO2, pH acidity, and shear rate $\gamma$. The influence of the suspension composition on its dynamic viscosity is analyzed. Groups of suspensions with statistically homogeneous composition have been identified, within which the interchangeability of compositions is possible. It is shown that at low shear rates, the rheological properties of suspensions differ significantly from those obtained at higher speeds. Significant positive correlations of the dynamic viscosity of the suspension with SiO2 concentration and pH acidity were established, and negative correlations with the shear rate $\gamma$. Regression models with regularization of the dependence of the dynamic viscosity $\eta$ on the concentrations of SiO2, NaOH, H3PO4, surfactant (surfactant), EDA (ethylenediamine), shear rate γ were constructed. For more accurate prediction of dynamic viscosity, the models using algorithms of neural network technologies and machine learning (MLP multilayer perceptron, RBF radial basis function network, SVM support vector method, RF random forest method) were trained. The effectiveness of the constructed models was evaluated using various statistical metrics, including the average absolute approximation error (MAE), the average quadratic error (MSE), the coefficient of determination $R^2$, and the average percentage of absolute relative deviation (AARD%). The RF model proved to be the best model in the training and test samples. The contribution of each component to the constructed model is determined. It is shown that the concentration of SiO2 has the greatest influence on the dynamic viscosity, followed by pH acidity and shear rate γ. The accuracy of the proposed models is compared to the accuracy of models previously published. The results confirm that the developed models can be considered as a practical tool for studying the behavior of nanofluids, which use aqueous suspensions based on nanoscale particles of silicon dioxide.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"