All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Modeling of plankton community state with density-dependent death and spatial activity of zooplankton
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 549-560Views (last year): 6.A vertically distributed three-component model of marine ecosystem is considered. State of the plankton community with nutrients is analyzed under the active movement of zooplankton in a vertical column of water. The necessary conditions of the Turing instability in the vicinity of the spatially homogeneous equilibrium are obtained. Stability of the spatially homogeneous equilibrium, the Turing instability and the oscillatory instability are examined depending on the biological characteristics of zooplankton and spatial movement of plankton. It is shown that at low values of zooplankton grazing rate and intratrophic interaction rate the system is Turing instable when the taxis rate is low. Stabilization occurs either through increased decline of zooplankton either by increasing the phytoplankton diffusion. With the increasing rate of consumption of phytoplankton range of parameters that determine the stability is reduced. A type of instability depends on the phytoplankton diffusion. For large values of diffusion oscillatory instability is observed, with a decrease in the phytoplankton diffusion zone of Turing instability is increases. In general, if zooplankton grazing rate is faster than phytoplankton growth rate the spatially homogeneous equilibrium is Turing instable or oscillatory instable. Stability is observed only at high speeds of zooplankton departure or its active movements. With the increase in zooplankton search activity spatial distribution of populations becomes more uniform, increasing the rate of diffusion leads to non-uniform spatial distribution. However, under diffusion the total number of the population is stabilized when the zooplankton grazing rate above the rate of phytoplankton growth. In general, at low rate of phytoplankton consumption the spatial structures formation is possible at low rates of zooplankton decline and diffusion of all the plankton community. With the increase in phytoplankton predation rate the phytoplankton diffusion and zooplankton spatial movement has essential effect on the spatial instability.
-
Biohydrochemical portrait of the White Sea
Computer Research and Modeling, 2018, v. 10, no. 1, pp. 125-160The biohydrochemical portrait of the White Sea is constructed on the CNPSi-model calculations based on long-term mean annual observations (average monthly hydrometeorological, hydrochemical and hydrobiological parameters of the marine environment) as well as on updated information on the nutrient input to the sea with the runoff of the main river tributaries (Niva, Onega, Northern Dvina, Mezen, Kem, Keret). Parameters of the marine environment are temperature, light, transparency, and biogenic load. Ecological characteristics of the sea “portrait” were calculated for nine marine areas (Kandalaksha, Onega, Dvinsky, Mezensky Bays, Solovetsky Islands, Basin, Gorlot, Voronka, Chupa Bay), these are: the concentration changes of organic and mineral compounds of biogenic elements (C, N, P, Si), the biomass of organisms of the lower trophic level (heterotrophic bacteria, diatomic phytoplankton, herbivorous and predatory zooplankton) and other ones (rates of substance concentration and organism biomass changes, internal and external substance flows, balances of individual substances and nutrients as a whole). Parameters of the marine environment state (water temperature, ratio of mineral fractions N < P) and dominant diatom phytoplankton in the sea (abundance, production, biomass, chlorophyll content a) were calculated and compared with the results of individual surveys (for 1972–1991 and 2007–2012) of the White Sea water areas. The methods for estimating the values of these parameters from observations and calculations differ, however, the calculated values of the phytoplankton state are comparable with the measurements and are similar to the data given in the literature. Therefore, according to the literature data, the annual production of diatoms in the White Sea is estimated at 1.5–3 million tons C (at a vegetation period of 180 days), and according to calculations it is ~2 and 3.5 million tons C for vegetation period of 150 and 180 days respectively.
Keywords: White Sea ecosystem, nutrients, heterotrophic bacterioplankton, diatom phytoplankton, herbivorous and predatory zooplankton, detritus, trophic chain, CNPSi-model of nutrient biotransformation, ecological portrait of the White Sea, the comparison of the observed and calculated parameters of diatoms (abundance, products, biomass, chlorophyll a).Views (last year): 15. Citations: 1 (RSCI). -
Monitoring the spread of Sosnowskyi’s hogweed using a random forest machine learning algorithm in Google Earth Engine
Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1357-1370Examining the spectral response of plants from data collected using remote sensing has a lot of potential for solving real-world problems in different fields of research. In this study, we have used the spectral property to identify the invasive plant Heracleum sosnowskyi Manden from satellite imagery. H. sosnowskyi is an invasive plant that causes many harms to humans, animals and the ecosystem at large. We have used data collected from the years 2018 to 2020 containing sample geolocation data from the Moscow Region where this plant exists and we have used Sentinel-2 imagery for the spectral analysis towards the aim of detecting it from the satellite imagery. We deployed a Random Forest (RF) machine learning model within the framework of Google Earth Engine (GEE). The algorithm learns from the collected data, which is made up of 12 bands of Sentinel-2, and also includes the digital elevation together with some spectral indices, which are used as features in the algorithm. The approach used is to learn the biophysical parameters of H. sosnowskyi from its reflectances by fitting the RF model directly from the data. Our results demonstrate how the combination of remote sensing and machine learning can assist in locating H. sosnowskyi, which aids in controlling its invasive expansion. Our approach provides a high detection accuracy of the plant, which is 96.93%.
-
Influence of diffusion and convection on the chemostat dynamics
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 121-129Views (last year): 1.Population dynamics is considered in a modified chemostat model including diffusion, chemotaxis, and nonlocal competitive losses. To account for influence of the external environment on the population of the ecosystem, a random parameter is included into the model equations. Computer simulations reveal three dynamic modes depending on system parameters: the transition from initial state to a spatially homogeneous steady state, to a spatially inhomogeneous distribution of population density, and elimination of population density.
-
Substantiation of optimum planting schemes for forest plantations: a computer experiment
Computer Research and Modeling, 2016, v. 8, no. 2, pp. 333-343Views (last year): 2. Citations: 2 (RSCI).The article presents the results of computer simulations aimed to assess the influence of tree spatial locations (planting schemes) on the productivity and the dynamics of soil fertility in forest plantations. The growth of aspen (Populus tremula L.) in plantations with short rotation (30 years) was simulated in the EFIMOD system of models with the soil and climatic data matching forested lands in the Mari El Republic. The outcome reveals that higher biomass rates, increase in soil organic matter stocks, and the minimal loss of soil nitrogen can be obtained when the distance between trees in the row equals 1–4 m and 4–6 м in aisles.
-
Modeling of calcium dynamics in soil organic layers
Computer Research and Modeling, 2010, v. 2, no. 1, pp. 103-110Views (last year): 1.Calcium is a major nutrient regulating metabolism in a plant. Deficiency of calcium results in a growth decline of plant tissues. Ca may be lost from forest soils due to acidic atmospheric deposition and tree harvesting. Plant-available calcium compounds are in the soil cation exchange complex and soil waters. Model of soil calcium dynamics linking it with the model of soil organic matter dynamics ROMUL in forest ecosystems is developed. ROMUL describes the mineralization and humification of the fraction of fresh litter which is further transformed into complex of partially humified substance (CHS) and then to stable humus (H) in dependence on temperature, soil moisture and chemical composition of the fraction (nitrogen, lignin and ash contents, pH). Rates of decomposition and humification being coefficients in the system of ordinary differential equations are evaluated using laboratory experiments and verified on a set of field experiments. Model of soil calcium dynamics describes calcium flows between pools of soil organic matter. Outputs are plant nutrition, leaching, synthesis of secondary minerals. The model describes transformation and mineralization of forest floor in detail. Experimental data for calibration model was used from spruсe forest of Bulgaria.
-
A modeling approach to estimate the gross and net primary production of forest ecosystems as a function of the fraction of absorbed photosynthetically active radiation
Computer Research and Modeling, 2016, v. 8, no. 2, pp. 345-353Views (last year): 1. Citations: 2 (RSCI).A simple non-linear model allowing to calculate daily and monthly GPP and NPP of forests using parameters characterizing the light-use efficiencies for GPP and NPP, and integral values of absorbed photosynthetically active radiation, obtained using field measurements and remotes sensing data was suggested. Daily and monthly GPP, NPP of the forest ecosystems were derived from the field measurements of the net ecosystem exchange of CO2 in the spruce and tropical rain forests using a process-based Mixfor-SVAT model.
-
Simulation modeling of directed movement in illumination gradient
Computer Research and Modeling, 2012, v. 4, no. 2, pp. 401-406Views (last year): 5.Simulation multiagent model of artificial life was created. Competitive ad-vantages of directed movement and diverse strategies of its using in population of protozoa in illumination gradient were considered. The results consistent with r-K selection theory were obtained. Agents behavior in artificial ecosystem are in qualitative agreement with behavior observed in nature.
-
Searching for connections between biological and physico-chemical characteristics of Rybinsk reservoir ecosystem. Part 2. Determination analysis
Computer Research and Modeling, 2013, v. 5, no. 2, pp. 271-292Views (last year): 2. Citations: 3 (RSCI).Based on contents of phytoplankton pigments, fluorescence samples and some physico-chemical characteristics of the Rybinsk reservoir waters, searching for connections between biological and physicalchemical characteristics is working out. The methods of describing of connections between qualitative classes of characteristics, based on forecast of quality values of one characteristics by quality values of another one, are studied. The borders of quality classes of studied characteristics are found.
-
Modelling of carbon dioxide net ecosystem exchange of hayfield on drained peat soil: land use scenario analysis
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1427-1449The data of episodic field measurements of carbon dioxide balance components (soil respiration — Rsoil, ecosystem respiration — Reco, net ecosystem exchange — NEE) of hayfields under use and abandoned one are interpreted by modelling. The field measurements were carried within five field campaigns in 2018 and 2019 on the drained part of the Dubna Peatland in Taldom District, Moscow Oblast, Russia. The territory is within humid continental climate zone. Peatland drainage was done out for milled peat extraction. After extraction was stopped, the residual peat deposit (1–1.5 m) was ploughed and grassed (Poa pratensis L.) for hay production. The current ground water level (GWL) varies from 0.3–0.5 m below the surface during wet and up to 1.0 m during dry periods. Daily dynamics of CO2 fluxes was measured using dynamic chamber method in 2018 (August) and 2019 (May, June, August) for abandoned ditch spacing only with sanitary mowing once in 5 years and the ditch spacing with annual mowing. NEE and Reco were measured on the sites with original vegetation, and Rsoil — after vegetation removal. To model a seasonal dynamics of NEE, the dependence of its components (Reco, Rsoil, and Gross ecosystematmosphere exchange of carbon dioxide — GEE) from soil and air temperature, GWL, photosynthetically active radiation, underground and aboveground plant biomass were used. The parametrization of the models has been carried out considering the stability of coefficients estimated by the bootstrap method. R2 (α = 0.05) between simulated and measured Reco was 0.44 (p < 0.0003) on abandoned and 0.59 (p < 0.04) on under use hayfield, and GEE was 0.57 (p < 0.0002) and 0.77 (p < 0.00001), respectively. Numerical experiments were carried out to assess the influence of different haymaking regime on NEE. It was found that NEE for the season (May 15 – September 30) did not differ much between the hayfield without mowing (4.5±1.0 tC·ha–1·season–1) and the abandoned one (6.2±1.4). Single mowing during the season leads to increase of NEE up to 6.5±0.9, and double mowing — up to 7.5±1.4 tC·ha–1·season–1. This means increase of carbon losses and CO2 emission into the atmosphere. Carbon loss on hayfield for both single and double mowing scenario was comparable with abandoned hayfield. The value of removed phytomass for single and double mowing was 0.8±0.1 tC·ha–1·season–1 and 1.4±0.1 (45% carbon content in dry phytomass) or 3.0 and 4.4 t·ha–1·season–1 of hay (17% moisture content). In comparison with the fallow, the removal of biomass of 0.8±0.1 at single and 1.4±0.1 tC·ha–1·season–1 double mowing is accompanied by an increase in carbon loss due to CO2 emissions, i.e., the growth of NEE by 0.3±0.1 and 1.3±0.6 tC·ha–1·season–1, respectively. This corresponds to the growth of NEE for each ton of withdrawn phytomass per hectare of 0.4±0.2 tС·ha–1·season–1 at single mowing, and 0.9±0.7 tС·ha–1·season–1 at double mowing. Therefore, single mowing is more justified in terms of carbon loss than double mowing. Extensive mowing does not increase CO2 emissions into the atmosphere and allows, in addition, to “replace” part of the carbon loss by agricultural production.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"