Результаты поиска по 'estimating function':
Найдено статей: 80
  1. Chulichkov A.I., Yuan B.
    Effective rank of a problem of function estimation based on measurement with an error of finite number of its linear functionals
    Computer Research and Modeling, 2014, v. 6, no. 2, pp. 189-202

    The problem of restoration of an element f of Euclidean functional space  L2(X) based on the results of measurements of a finite set of its linear functionals, distorted by (random) error is solved. A priori data aren't assumed. Family of linear subspaces of the maximum (effective) dimension for which the projections of element to them allow estimates with a given accuracy, is received. The effective rank ρ(δ) of the estimation problem is defined as the function equal to the maximum dimension of an orthogonal component Pf of the element f which can be estimated with a error, which is not surpassed the value δ. The example of restoration of a spectrum of radiation based on a finite set of experimental data is given.

  2. The paper develops a theory of a new so-called two-parametric approach to the random signals' analysis and processing. A mathematical simulation and the task solutions’ comparison have been implemented for the Gauss and Rice statistical models. The applicability of the Rice statistical model is substantiated for the tasks of data and images processing when the signal’s envelope is being analyzed. A technique is developed and theoretically substantiated for solving the task of the noise suppression and initial image reconstruction by means of joint calculation of both statistical parameters — an initial signal’s mean value and noise dispersion — based on the maximum likelihood method within the Rice distribution. The peculiarities of this distribution’s likelihood function and the following from them possibilities of the signal and noise estimation have been analyzed.

    Views (last year): 2. Citations: 4 (RSCI).
  3. Zyza A.V.
    Computer studies of polynomial solutions for gyrostat dynamics
    Computer Research and Modeling, 2018, v. 10, no. 1, pp. 7-25

    We study polynomial solutions of gyrostat motion equations under potential and gyroscopic forces applied and of gyrostat motion equations in magnetic field taking into account Barnett–London effect. Mathematically, either of the above mentioned problems is described by a system of non-linear ordinary differential equations whose right hand sides contain fifteen constant parameters. These parameters characterize the gyrostat mass distribution, as well as potential and non-potential forces acting on gyrostat. We consider polynomial solutions of Steklov–Kovalevski–Gorjachev and Doshkevich classes. The structure of invariant relations for polynomial solutions shows that, as a rule, on top of the fifteen parameters mentioned one should add no less than twenty five problem parameters. In the process of solving such a multi-parametric problem in this paper we (in addition to analytic approach) apply numeric methods based on CAS. We break our studies of polynomial solutions existence into two steps. During the first step, we estimate maximal degrees of polynomials considered and obtain a non-linear algebraic system for parameters of differential equations and polynomial solutions. In the second step (using the above CAS software) we study the solvability conditions of the system obtained and investigate the conditions of the constructed solutions to be real.

    We construct two new polynomial solutions for Kirchhoff–Poisson. The first one is described by the following property: the projection squares of angular velocity on the non-baracentric axes are the fifth degree polynomials of the angular velocity vector component of the baracentric axis that is represented via hypereliptic function of time. The second solution is characterized by the following: the first component of velocity conditions is a second degree polynomial, the second component is a polynomial of the third degree, and the square of the third component is the sixth degree polynomial of the auxiliary variable that is an inversion of the elliptic Legendre integral.

    The third new partial solution we construct for gyrostat motion equations in the magnetic field with Barnett–London effect. Its structure is the following: the first and the second components of the angular velocity vector are the second degree polynomials, and the square of the third component is a fourth degree polynomial of the auxiliary variable which is found via inversion of the elliptic Legendre integral of the third kind.

    All the solutions constructed in this paper are new and do not have analogues in the fixed point dynamics of a rigid body.

    Views (last year): 15.
  4. Fasondini M., Hale N., Spoerer R., Weideman J.A.C.
    Quadratic Padé Approximation: Numerical Aspects and Applications
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1017-1031

    Padé approximation is a useful tool for extracting singularity information from a power series. A linear Padé approximant is a rational function and can provide estimates of pole and zero locations in the complex plane. A quadratic Padé approximant has square root singularities and can, therefore, provide additional information such as estimates of branch point locations. In this paper, we discuss numerical aspects of computing quadratic Padé approximants as well as some applications. Two algorithms for computing the coefficients in the approximant are discussed: a direct method involving the solution of a linear system (well-known in the mathematics community) and a recursive method (well-known in the physics community). We compare the accuracy of these two methods when implemented in floating-point arithmetic and discuss their pros and cons. In addition, we extend Luke’s perturbation analysis of linear Padé approximation to the quadratic case and identify the problem of spurious branch points in the quadratic approximant, which can cause a significant loss of accuracy. A possible remedy for this problem is suggested by noting that these troublesome points can be identified by the recursive method mentioned above. Another complication with the quadratic approximant arises in choosing the appropriate branch. One possibility, which is to base this choice on the linear approximant, is discussed in connection with an example due to Stahl. It is also known that the quadratic method is capable of providing reasonable approximations on secondary sheets of the Riemann surface, a fact we illustrate here by means of an example. Two concluding applications show the superiority of the quadratic approximant over its linear counterpart: one involving a special function (the Lambert $W$-function) and the other a nonlinear PDE (the continuation of a solution of the inviscid Burgers equation into the complex plane).

  5. Spevak L.P., Nefedova O.A.
    Numerical solution to a two-dimensional nonlinear heat equation using radial basis functions
    Computer Research and Modeling, 2022, v. 14, no. 1, pp. 9-22

    The paper presents a numerical solution to the heat wave motion problem for a degenerate second-order nonlinear parabolic equation with a source term. The nonlinearity is conditioned by the power dependence of the heat conduction coefficient on temperature. The problem for the case of two spatial variables is considered with the boundary condition specifying the heat wave motion law. A new solution algorithm based on an expansion in radial basis functions and the boundary element method is proposed. The solution is constructed stepwise in time with finite difference time approximation. At each time step, a boundary value problem for the Poisson equation corresponding to the original equation at a fixed time is solved. The solution to this problem is constructed iteratively as the sum of a particular solution to the nonhomogeneous equation and a solution to the corresponding homogeneous equation satisfying the boundary conditions. The homogeneous equation is solved by the boundary element method. The particular solution is sought by the collocation method using inhomogeneity expansion in radial basis functions. The calculation algorithm is optimized by parallelizing the computations. The algorithm is implemented as a program written in the C++ language. The parallel computations are organized by using the OpenCL standard, and this allows one to run the same parallel code either on multi-core CPUs or on graphic CPUs. Test cases are solved to evaluate the effectiveness of the proposed solution method and the correctness of the developed computational technique. The calculation results are compared with known exact solutions, as well as with the results we obtained earlier. The accuracy of the solutions and the calculation time are estimated. The effectiveness of using various systems of radial basis functions to solve the problems under study is analyzed. The most suitable system of functions is selected. The implemented complex computational experiment shows higher calculation accuracy of the proposed new algorithm than that of the previously developed one.

  6. Sviridenko A.B.
    The iterations’ number estimation for strongly polynomial linear programming algorithms
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 249-285

    A direct algorithm for solving a linear programming problem (LP), given in canonical form, is considered. The algorithm consists of two successive stages, in which the following LP problems are solved by a direct method: a non-degenerate auxiliary problem at the first stage and some problem equivalent to the original one at the second. The construction of the auxiliary problem is based on a multiplicative version of the Gaussian exclusion method, in the very structure of which there are possibilities: identification of incompatibility and linear dependence of constraints; identification of variables whose optimal values are obviously zero; the actual exclusion of direct variables and the reduction of the dimension of the space in which the solution of the original problem is determined. In the process of actual exclusion of variables, the algorithm generates a sequence of multipliers, the main rows of which form a matrix of constraints of the auxiliary problem, and the possibility of minimizing the filling of the main rows of multipliers is inherent in the very structure of direct methods. At the same time, there is no need to transfer information (basis, plan and optimal value of the objective function) to the second stage of the algorithm and apply one of the ways to eliminate looping to guarantee final convergence.

    Two variants of the algorithm for solving the auxiliary problem in conjugate canonical form are presented. The first one is based on its solution by a direct algorithm in terms of the simplex method, and the second one is based on solving a problem dual to it by the simplex method. It is shown that both variants of the algorithm for the same initial data (inputs) generate the same sequence of points: the basic solution and the current dual solution of the vector of row estimates. Hence, it is concluded that the direct algorithm is an algorithm of the simplex method type. It is also shown that the comparison of numerical schemes leads to the conclusion that the direct algorithm allows to reduce, according to the cubic law, the number of arithmetic operations necessary to solve the auxiliary problem, compared with the simplex method. An estimate of the number of iterations is given.

  7. Polosin V.G.
    Quantile shape measures for heavy-tailed distributions
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1041-1077

    Currently, journal papers contain numerous examples of the use of heavy-tailed distributions for applied research on various complex systems. Models of extreme data are usually limited to a small set of distribution shapes that in this field of applied research historically been used. It is possible to increase the composition of the set of probability distributions shapes through comparing the measures of the distribution shapes and choosing the most suitable implementations. The example of a beta distribution of the second kind shown that the lack of definability of the moments of heavy-tailed implementations of the beta family of distributions limits the applicability of the existing classical methods of moments for studying the distributions shapes when are characterized heavy tails. For this reason, the development of new methods for comparing distributions based on quantile shape measures free from the restrictions on the shape parameters remains relevant study the possibility of constructing a space of quantile measures of shapes for comparing distributions with heavy tails. The operation purpose consists in computer research of creation possibility of space of the quantile’s measures for the comparing of distributions property with heavy tails. On the basis of computer simulation there the distributions implementations in measures space of shapes were been shown. Mapping distributions in space only of the parametrical measures of shapes has shown that the imposition of regions for heavy tails distribution made impossible compare the shape of distributions belonging to different type in the space of quantile measures of skewness and kurtosis. It is well known that shape information measures such as entropy and entropy uncertainty interval contain additional information about the shape measure of heavy-tailed distributions. In this paper, a quantile entropy coefficient is proposed as an additional independent measure of shape, which is based on the ratio of entropy and quantile uncertainty intervals. Also estimates of quantile entropy coefficients are obtained for a number of well-known heavy-tailed distributions. The possibility of comparing the distributions shapes with realizations of the beta distribution of the second kind is illustrated by the example of the lognormal distribution and the Pareto distribution. Due to mapping the position of stable distributions in the three-dimensional space of quantile measures of shapes estimate made it possible the shape parameters to of the beta distribution of the second kind, for which shape is closest to the Lévy shape. From the paper material it follows that the display of distributions in the three-dimensional space of quantile measures of the forms of skewness, kurtosis and entropy coefficient significantly expands the possibility of comparing the forms for distributions with heavy tails.

  8. Shirkov P.D., Zubanov A.M.
    Two-stage single ROW methods with complex coefficients for autonomous systems of ODE
    Computer Research and Modeling, 2010, v. 2, no. 1, pp. 19-32

    The basic subset of two-stage Rosenbrock schemes with complex coefficients for numerical solution of autonomous systems of ordinary differential equations (ODE) has been considered. Numerical realization of such schemes requires one LU-decomposition, two computations of right side function and one computation of Jacoby matrix of the system per one step. The full theoretical investigation of accuracy and stability of such schemes have been done. New A-stable methods of the 3-rd order of accuracy with different properties have been constructed. There are high order L-decremented schemes as well as schemes with simple estimation of the main term of truncation error which is necessary for automatic evaluation of time step. Testing of new methods has been performed.

    Citations: 1 (RSCI).
  9. Tikhov M.S., Borodina T.S.
    Mathematical model and computer analysis of tests for homogeneity of “dose–effect” dependence
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 267-273

    The given work is devoted to the comparison of two tests for homogeneity: chi-square test based on contingency tables of 2 × 2 and test for homogeneity based on asymptotic distributions of the summarized square error of a distribution function estimators in the model of ”dose–effect” dependence. The evaluation of test power is performed by means of computer simulation. In order to design efficiency functions the method of kernel regression estimator based on Nadaray–Watson estimator is used.

    Views (last year): 6.
  10. The paper provides a solution of the two-parameter task of joint signal and noise estimation at data analysis within the conditions of the Rice distribution by the techniques of mathematical statistics: the maximum likelihood method and the variants of the method of moments. The considered variants of the method of moments include the following techniques: the joint signal and noise estimation on the basis of measuring the 2-nd and the 4-th moments (MM24) and on the basis of measuring the 1-st and the 2-nd moments (MM12). For each of the elaborated methods the explicit equations’ systems have been obtained for required parameters of the signal and noise. An important mathematical result of the investigation consists in the fact that the solution of the system of two nonlinear equations with two variables — the sought for signal and noise parameters — has been reduced to the solution of just one equation with one unknown quantity what is important from the view point of both the theoretical investigation of the proposed technique and its practical application, providing the possibility of essential decreasing the calculating resources required for the technique’s realization. The implemented theoretical analysis has resulted in an important practical conclusion: solving the two-parameter task does not lead to the increase of required numerical resources if compared with the one-parameter approximation. The task is meaningful for the purposes of the rician data processing, in particular — the image processing in the systems of magnetic-resonance visualization. The theoretical conclusions have been confirmed by the results of the numerical experiment.

    Views (last year): 2. Citations: 2 (RSCI).
Pages: next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"