All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Subgradient methods for weakly convex and relatively weakly convex problems with a sharp minimum
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 393-412The work is devoted to the study of subgradient methods with different variations of the Polyak stepsize for minimization functions from the class of weakly convex and relatively weakly convex functions that have the corresponding analogue of a sharp minimum. It turns out that, under certain assumptions about the starting point, such an approach can make it possible to justify the convergence of the subgradient method with the speed of a geometric progression. For the subgradient method with the Polyak stepsize, a refined estimate for the rate of convergence is proved for minimization problems for weakly convex functions with a sharp minimum. The feature of this estimate is an additional consideration of the decrease of the distance from the current point of the method to the set of solutions with the increase in the number of iterations. The results of numerical experiments for the phase reconstruction problem (which is weakly convex and has a sharp minimum) are presented, demonstrating the effectiveness of the proposed approach to estimating the rate of convergence compared to the known one. Next, we propose a variation of the subgradient method with switching over productive and non-productive steps for weakly convex problems with inequality constraints and obtain the corresponding analog of the result on convergence with the rate of geometric progression. For the subgradient method with the corresponding variation of the Polyak stepsize on the class of relatively Lipschitz and relatively weakly convex functions with a relative analogue of a sharp minimum, it was obtained conditions that guarantee the convergence of such a subgradient method at the rate of a geometric progression. Finally, a theoretical result is obtained that describes the influence of the error of the information about the (sub)gradient available by the subgradient method and the objective function on the estimation of the quality of the obtained approximate solution. It is proved that for a sufficiently small error $\delta > 0$, one can guarantee that the accuracy of the solution is comparable to $\delta$.
-
The problem of choosing solutions in the classical format of the description of a molecular system
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1573-1600The numerical methods developed by the author recently for calculating the molecular system based on the direct solution of the Schrodinger equation by the Monte Carlo method have shown a huge uncertainty in the choice of solutions. On the one hand, it turned out to be possible to build many new solutions; on the other hand, the problem of their connection with reality has become sharply aggravated. In ab initio quantum mechanical calculations, the problem of choosing solutions is not so acute after the transition to the classical format of describing a molecular system in terms of potential energy, the method of molecular dynamics, etc. In this paper, we investigate the problem of choosing solutions in the classical format of describing a molecular system without taking into account quantum mechanical prerequisites. As it turned out, the problem of choosing solutions in the classical format of describing a molecular system is reduced to a specific marking of the configuration space in the form of a set of stationary points and reconstruction of the corresponding potential energy function. In this formulation, the solution of the choice problem is reduced to two possible physical and mathematical problems: to find all its stationary points for a given potential energy function (the direct problem of the choice problem), to reconstruct the potential energy function for a given set of stationary points (the inverse problem of the choice problem). In this paper, using a computational experiment, the direct problem of the choice problem is discussed using the example of a description of a monoatomic cluster. The number and shape of the locally equilibrium (saddle) configurations of the binary potential are numerically estimated. An appropriate measure is introduced to distinguish configurations in space. The format of constructing the entire chain of multiparticle contributions to the potential energy function is proposed: binary, threeparticle, etc., multiparticle potential of maximum partiality. An infinite number of locally equilibrium (saddle) configurations for the maximum multiparticle potential is discussed and illustrated. A method of variation of the number of stationary points by combining multiparticle contributions to the potential energy function is proposed. The results of the work listed above are aimed at reducing the huge arbitrariness of the choice of the form of potential that is currently taking place. Reducing the arbitrariness of choice is expressed in the fact that the available knowledge about the set of a very specific set of stationary points is consistent with the corresponding form of the potential energy function.
-
Analysis of socio-informational influence through the examples of US wars in Korea, Vietnam, and Iraq
Computer Research and Modeling, 2014, v. 6, no. 1, pp. 167-184Views (last year): 2. Citations: 3 (RSCI).In the first section of the paper a definition of presentation (perception) functions — components of individual’s subjective view of the world — are proposed. Using the basic psychophysical law formulated by S. Stevens, and relying on the hypotheses of socialization, rationality, individual choice, complexity of informational influences, dynamics of ideas and perceptions, and accessibility, formal dependence was derived allowing to calculate the function of presentation (perception) for probabilistic indicators (with known distribution function or subjective probability) and of interval type. In the second and third sections parameters of the presentation function according to surveys of the U.S. population related to the war in Korea, Vietnam, and Iraq are estimated.
-
Nonextensive Tsallis statistics of contract system of prime contractors and subcontractors in defense industry
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1163-1183In this work, we analyze the system of contracts made by Russian defense enterprises in the process of state defense order execution. We conclude that methods of statistical mechanics can be applied to the description of the given system. Following the original grand-canonical ensemble approach, we can create the statistical ensemble under investigation as a set of instant snapshots of indistinguishable contracts having individual values. We show that due to government regulations of contract prices the contract system can be described in terms of nonextensive Tsallis statistics. We have found that probability distributions of contract prices correspond to deformed Bose – Einstein distributions obtained using nonextensive Tsallis entropy. This conclusion is true both in the case of the whole set of contracts and in the case of the contracts made by an individual defense company as a seller.
In order to analyze how deformed Bose – Einstein distributions fit the empirical contract price distributions we compare the corresponding cumulative distribution functions. We conclude that annual distributions of individual sales which correspond to each company’s contract (order) can be used as relevant data for contract price distributions analysis. The empirical cumulative distribution functions for the individual sales ranking of Concern CSRI Elektropribor, one of the leading Russian defense companies, are analyzed for the period 2007–2021. The theoretical cumulative distribution functions, obtained using deformed Bose – Einstein distributions in the case of «rare contract gas» limit, fit well to the empirical cumulative distribution functions. The fitted values for the entropic index show that the degree of nonextensivity of the system under investigations is rather high. It is shown that the characteristic prices of distributions can be estimated by weighing the values of annual individual sales with the escort probabilities. Given that the fitted values of chemical potential are equal to zero, we suggest that «gas of contracts» can be compared to photon gas in which the number of particles is not conserved.
-
Analogues of the relative strong convexity condition for relatively smooth problems and adaptive gradient-type methods
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 413-432This paper is devoted to some variants of improving the convergence rate guarantees of the gradient-type algorithms for relatively smooth and relatively Lipschitz-continuous problems in the case of additional information about some analogues of the strong convexity of the objective function. We consider two classes of problems, namely, convex problems with a relative functional growth condition, and problems (generally, non-convex) with an analogue of the Polyak – Lojasiewicz gradient dominance condition with respect to Bregman divergence. For the first type of problems, we propose two restart schemes for the gradient type methods and justify theoretical estimates of the convergence of two algorithms with adaptively chosen parameters corresponding to the relative smoothness or Lipschitz property of the objective function. The first of these algorithms is simpler in terms of the stopping criterion from the iteration, but for this algorithm, the near-optimal computational guarantees are justified only on the class of relatively Lipschitz-continuous problems. The restart procedure of another algorithm, in its turn, allowed us to obtain more universal theoretical results. We proved a near-optimal estimate of the complexity on the class of convex relatively Lipschitz continuous problems with a functional growth condition. We also obtained linear convergence rate guarantees on the class of relatively smooth problems with a functional growth condition. For a class of problems with an analogue of the gradient dominance condition with respect to the Bregman divergence, estimates of the quality of the output solution were obtained using adaptively selected parameters. We also present the results of some computational experiments illustrating the performance of the methods for the second approach at the conclusion of the paper. As examples, we considered a linear inverse Poisson problem (minimizing the Kullback – Leibler divergence), its regularized version which allows guaranteeing a relative strong convexity of the objective function, as well as an example of a relatively smooth and relatively strongly convex problem. In particular, calculations show that a relatively strongly convex function may not satisfy the relative variant of the gradient dominance condition.
-
Models of production functions for the Russian economy
Computer Research and Modeling, 2013, v. 5, no. 2, pp. 293-312Views (last year): 21. Citations: 65 (RSCI).A comparative analysis of the applicability of several variants of the production function models for the analysis of modern Russian economy is presented in a paper. Through regression analysis, the effect of such factors as the oil prices on the world market, the innovation, the hypothesis of constant returns to factors of production is estimated. Calculations were made both for the economy as a whole and for separate industries. It is shown that the models of the economy of Russia as a whole and some of its industries in relation to real data have significant increasing returns to labor. Limits of applicability for the models are discussed.
-
Fuzzy modeling of human susceptibility to panic situations
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 203-218The study of the mechanism for the development of mass panic in view of its extreme importance and social danger is an important scientific task. Available information about the mechanism of her development is based mainly on the work of psychologists and belongs to the category of inaccurate. Therefore, the theory of fuzzy sets has been chosen as a tool for developing a mathematical model of a person's susceptibility to panic situations. As a result of the study, an fuzzy model was developed, consisting of blocks: “Fuzzyfication”, where the degree of belonging of the values of the input parameters to fuzzy sets is calculated; “Inference” where, based on the degree of belonging of the input parameters, the resulting function of belonging of the output value to an odd model is calculated; “Defuzzyfication”, where using the center of gravity method, the only quantitative value of the output variable characterizing a person's susceptibility to panic situations is determined Since the real quantitative values for linguistic variables mental properties of a person are unknown, then to assess the quality of the developed model, without endangering people, it is not possible. Therefore, the quality of the results of fuzzy modeling was estimated by the calculated value of the determination coefficient R2, which showed that the developed fuzzy model belongs to the category of good quality models $(R^2 = 0.93)$, which confirms the legitimacy of the assumptions made during her development. In accordance with to the results of the simulation, human susceptibility to panic situations for sanguinics and cholerics can be attributed to “increased” (0.88), and for phlegmatics and melancholics — to “moderate” (0.38). This means that cholerics and sanguinics can become epicenters of panic and the initiators of stampede, and phlegmatics and melancholics — obstacles to evacuation routes. What should be taken into account when developing effective evacuation measures, the main task of which is to quickly and safely evacuate people from adverse conditions. In the approved methods, the calculation of normative values of safety parameters is based on simplified analytical models of human flow movement, because a large number of factors have to be taken into account, some of which are quantitatively uncertain. The obtained result in the form of quantitative estimates of a person's susceptibility to panic situations will increase the accuracy of calculations.
-
Adaptive first-order methods for relatively strongly convex optimization problems
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 445-472The article is devoted to first-order adaptive methods for optimization problems with relatively strongly convex functionals. The concept of relatively strong convexity significantly extends the classical concept of convexity by replacing the Euclidean norm in the definition by the distance in a more general sense (more precisely, by Bregman’s divergence). An important feature of the considered classes of problems is the reduced requirements concerting the level of smoothness of objective functionals. More precisely, we consider relatively smooth and relatively Lipschitz-continuous objective functionals, which allows us to apply the proposed techniques for solving many applied problems, such as the intersection of the ellipsoids problem (IEP), the Support Vector Machine (SVM) for a binary classification problem, etc. If the objective functional is convex, the condition of relatively strong convexity can be satisfied using the problem regularization. In this work, we propose adaptive gradient-type methods for optimization problems with relatively strongly convex and relatively Lipschitzcontinuous functionals for the first time. Further, we propose universal methods for relatively strongly convex optimization problems. This technique is based on introducing an artificial inaccuracy into the optimization model, so the proposed methods can be applied both to the case of relatively smooth and relatively Lipschitz-continuous functionals. Additionally, we demonstrate the optimality of the proposed universal gradient-type methods up to the multiplication by a constant for both classes of relatively strongly convex problems. Also, we show how to apply the technique of restarts of the mirror descent algorithm to solve relatively Lipschitz-continuous optimization problems. Moreover, we prove the optimal estimate of the rate of convergence of such a technique. Also, we present the results of numerical experiments to compare the performance of the proposed methods.
-
Interval analysis of vegetation cover dynamics
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1191-1205In the development of the previously obtained result on modeling the dynamics of vegetation cover, due to variations in the temperature background, a new scheme for the interval analysis of the dynamics of floristic images of formations is presented in the case when the parameter of the response rate of the model of the dynamics of each counting plant species is set by the interval of scatter of its possible values. The detailed description of the functional parameters of macromodels of biodiversity, desired in fundamental research, taking into account the essential reasons for the observed evolutionary processes, may turn out to be a problematic task. The use of more reliable interval estimates of the variability of functional parameters “bypasses” the problem of uncertainty in the primary assessment of the evolution of the phyto-resource potential of the developed controlled territories. The solutions obtained preserve not only a qualitative picture of the dynamics of species diversity, but also give a rigorous, within the framework of the initial assumptions, a quantitative assessment of the degree of presence of each plant species. The practical significance of two-sided estimation schemes based on the construction of equations for the upper and lower boundaries of the trajectories of the scatter of solutions depends on the conditions and measure of proportional correspondence of the intervals of scatter of the initial parameters with the intervals of scatter of solutions. For dynamic systems, the desired proportionality is not always ensured. The given examples demonstrate the acceptable accuracy of interval estimation of evolutionary processes. It is important to note that the constructions of the estimating equations generate vanishing intervals of scatter of solutions for quasi-constant temperature perturbations of the system. In other words, the trajectories of stationary temperature states of the vegetation cover are not roughened by the proposed interval estimation scheme. The rigor of the result of interval estimation of the species composition of the vegetation cover of formations can become a determining factor when choosing a method in the problems of analyzing the dynamics of species diversity and the plant potential of territorial systems of resource-ecological monitoring. The possibilities of the proposed approach are illustrated by geoinformation images of the computational analysis of the dynamics of the vegetation cover of the Yamal Peninsula and by the graphs of the retro-perspective analysis of the floristic variability of the formations of the landscapelithological group “Upper” based on the data of the summer temperature background of the Salehard weather station from 2010 to 1935. The developed indicators of floristic variability and the given graphs characterize the dynamics of species diversity, both on average and individually in the form of intervals of possible states for each species of plant.
-
Using extended ODE systems to investigate the mathematical model of the blood coagulation
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 931-951Many properties of ordinary differential equations systems solutions are determined by the properties of the equations in variations. An ODE system, which includes both the original nonlinear system and the equations in variations, will be called an extended system further. When studying the properties of the Cauchy problem for the systems of ordinary differential equations, the transition to extended systems allows one to study many subtle properties of solutions. For example, the transition to the extended system allows one to increase the order of approximation for numerical methods, gives the approaches to constructing a sensitivity function without using numerical differentiation procedures, allows to use methods of increased convergence order for the inverse problem solution. Authors used the Broyden method belonging to the class of quasi-Newtonian methods. The Rosenbroke method with complex coefficients was used to solve the stiff systems of the ordinary differential equations. In our case, it is equivalent to the second order approximation method for the extended system.
As an example of the proposed approach, several related mathematical models of the blood coagulation process were considered. Based on the analysis of the numerical calculations results, the conclusion was drawn that it is necessary to include a description of the factor XI positive feedback loop in the model equations system. Estimates of some reaction constants based on the numerical inverse problem solution were given.
Effect of factor V release on platelet activation was considered. The modification of the mathematical model allowed to achieve quantitative correspondence in the dynamics of the thrombin production with experimental data for an artificial system. Based on the sensitivity analysis, the hypothesis tested that there is no influence of the lipid membrane composition (the number of sites for various factors of the clotting system, except for thrombin sites) on the dynamics of the process.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"