Результаты поиска по 'high-performance computing systems':
Найдено статей: 24
  1. Sviridenko A.B.
    Direct multiplicative methods for sparse matrices. Linear programming
    Computer Research and Modeling, 2017, v. 9, no. 2, pp. 143-165

    Multiplicative methods for sparse matrices are best suited to reduce the complexity of operations solving systems of linear equations performed on each iteration of the simplex method. The matrix of constraints in these problems of sparsely populated nonzero elements, which allows to obtain the multipliers, the main columns which are also sparse, and the operation of multiplication of a vector by a multiplier according to the complexity proportional to the number of nonzero elements of this multiplier. In addition, the transition to the adjacent basis multiplier representation quite easily corrected. To improve the efficiency of such methods requires a decrease in occupancy multiplicative representation of the nonzero elements. However, at each iteration of the algorithm to the sequence of multipliers added another. As the complexity of multiplication grows and linearly depends on the length of the sequence. So you want to run from time to time the recalculation of inverse matrix, getting it from the unit. Overall, however, the problem is not solved. In addition, the set of multipliers is a sequence of structures, and the size of this sequence is inconvenient is large and not precisely known. Multiplicative methods do not take into account the factors of the high degree of sparseness of the original matrices and constraints of equality, require the determination of initial basic feasible solution of the problem and, consequently, do not allow to reduce the dimensionality of a linear programming problem and the regular procedure of compression — dimensionality reduction of multipliers and exceptions of the nonzero elements from all the main columns of multipliers obtained in previous iterations. Thus, the development of numerical methods for the solution of linear programming problems, which allows to overcome or substantially reduce the shortcomings of the schemes implementation of the simplex method, refers to the current problems of computational mathematics.

    In this paper, the approach to the construction of numerically stable direct multiplier methods for solving problems in linear programming, taking into account sparseness of matrices, presented in packaged form. The advantage of the approach is to reduce dimensionality and minimize filling of the main rows of multipliers without compromising accuracy of the results and changes in the position of the next processed row of the matrix are made that allows you to use static data storage formats.

    As a direct continuation of this work is the basis for constructing a direct multiplicative algorithm set the direction of descent in the Newton methods for unconstrained optimization is proposed to put a modification of the direct multiplier method, linear programming by integrating one of the existing design techniques significantly positive definite matrix of the second derivatives.

    Views (last year): 10. Citations: 2 (RSCI).
  2. Shirkov P.D., Zubanov A.M.
    Two-stage single ROW methods with complex coefficients for autonomous systems of ODE
    Computer Research and Modeling, 2010, v. 2, no. 1, pp. 19-32

    The basic subset of two-stage Rosenbrock schemes with complex coefficients for numerical solution of autonomous systems of ordinary differential equations (ODE) has been considered. Numerical realization of such schemes requires one LU-decomposition, two computations of right side function and one computation of Jacoby matrix of the system per one step. The full theoretical investigation of accuracy and stability of such schemes have been done. New A-stable methods of the 3-rd order of accuracy with different properties have been constructed. There are high order L-decremented schemes as well as schemes with simple estimation of the main term of truncation error which is necessary for automatic evaluation of time step. Testing of new methods has been performed.

    Citations: 1 (RSCI).
  3. Babakov A.V.
    Simulation of unsteady structure of flow over descent module in the Martian atmosphere conditions
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 701-714

    The article presents the results of numerical modeling of the vortex spatial non-stationary motion of the medium arising near the lateral and bottom surfaces of the descent module during its movement in the atmosphere of Mars. The numerical study was performed for the high-speed streamline regime at various angles of attack. Mathematical modeling was carried out on the basis of the Navier – Stokes model and the model of equilibrium chemical reactions for the Martian atmosphere gas. The simulation results showed that under the considered conditions of the descent module motion, a non-stationary flow with a pronounced vortex character is realized near its lateral and bottom surfaces. Numerical calculations indicate that, depending on the angle of attack, the nonstationarity and vortex nature of the flow can manifest itself both on the entire lateral and bottom surfaces of the module, and, partially, on their leeward side. For various angles of attack, pictures of the vortex structure of the flow near the surface of the descent vehicle and in its near wake are presented, as well as pictures of the gas-dynamic parameters fields. The non-stationary nature of the flow is confirmed by the presented time dependences of the gas-dynamic parameters of the flow at various points on the module surface. The carried out parametric calculations made it possible to determine the dependence of the aerodynamic characteristics of the descent module on the angle of attack. Mathematical modeling is carried out on the basis of the conservative numerical method of fluxes, which is a finitevolume method based on a finite-difference writing of the conservation laws of additive characteristics of the medium using «upwind» approximations of stream variables. To simulate the complex vortex structure of the flow over descent module, the nonuniform computational grids are used, including up to 30 million finite volumes with exponential thickening to the surface, which made it possible to reveal small-scale vortex formations. Numerical investigations were carried out on the basis of the developed software package based on parallel algorithms of the used numerical method and implemented on modern multiprocessor computer systems. The results of numerical simulation presented in the article were obtained using up to two thousand computing cores of a multiprocessor complex.

  4. Aksenov A.A., Alexandrova N.A., Budnikov A.V., Zhestkov M.N., Sazonova M.L., Kochetkov M.A.
    Simulation of multi-temperature flows turbulent mixing in a T-junctions by the LES approach in FlowVision software package
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 827-843

    The paper presents the results of numerical simulation of different-temperature water flows turbulent mixing in a T-junctions in the FlowVision software package. The article describes in detail an experimental stand specially designed to obtain boundary conditions that are simple for most computational fluid dynamics software systems. Values of timeaveraged temperatures and velocities in the control sensors and planes were obtained according to the test results. The article presents the system of partial differential equations used in the calculation describing the process of heat and mass transfer in a liquid using the Smagorinsky turbulence model. Boundary conditions are specified that allow setting the random velocity pulsations at the entrance to the computational domain. Distributions of time-averaged water velocity and temperature in control sections and sensors are obtained. The simulation is performed on various computational grids, for which the axes of the global coordinate system coincide with the directions of hot and cold water flows. The possibility for FlowVision PC to construct a computational grid in the simulation process based on changes in flow parameters is shown. The influence of such an algorithm for constructing a computational grid on the results of calculations is estimated. The results of calculations on a diagonal grid using a beveled scheme are given (the direction of the coordinate lines does not coincide with the direction of the tee pipes). The high efficiency of the beveled scheme is shown when modeling flows whose general direction does not coincide with the faces of the calculated cells. A comparison of simulation results on various computational grids is carried out. The numerical results obtained in the FlowVision PC are compared with experimental data and calculations performed using other computing programs. The results of modeling turbulent mixing of water flow of different temperatures in the FlowVision PC are closer to experimental data in comparison with calculations in CFX ANSYS. It is shown that the application of the LES turbulence model on relatively small computational grids in the FlowVision PC allows obtaining results with an error within 5%.

  5. Chernov I.A., Ivashko E.E., Nikitina N.N., Gabis I.E.
    Numerical identification of the dehydriding model in a BOINC-based grid system
    Computer Research and Modeling, 2013, v. 5, no. 1, pp. 37-45

    In the paper we consider the inverse problem of evaluating kinetic parameters of the model of dehydriding of metal powder using experimental data. The «blind search» in the space of parameters revealed multiple physically reasonable solutions. The solutions were obtained using highperformance computational modeling based on BOINC–grid.

    Citations: 6 (RSCI).
  6. Dzhoraev A.R.
    GPU-accelerated hybrid systems for high-performance computing in bio-informatics
    Computer Research and Modeling, 2010, v. 2, no. 2, pp. 163-167

    Modern GPUs are massively-parallel processors, offering substantial amount of computational power in energy-efficient package. We discuss the benefits of utilizing this computing power for modeling problems in bio-informatics, such as molecular dynamics, quantum chemistry and sequence analysis.

    Views (last year): 2. Citations: 6 (RSCI).
  7. Geller O.V., Vasilev M.O., Kholodov Y.A.
    Building a high-performance computing system for simulation of gas dynamics
    Computer Research and Modeling, 2010, v. 2, no. 3, pp. 309-317

    The aim of research is to develop software system for solving gas dynamic problem in multiply connected integration domains of regular shape by high-performance computing system. Comparison of the various technologies of parallel computing has been done. The program complex is implemented using multithreaded parallel systems to organize both multi-core and massively parallel calculation. The comparison of numerical results with known model problems solutions has been done. Research of performance of different computing platforms has been done.

    Views (last year): 5. Citations: 6 (RSCI).
  8. Bogdanov A.V., Degtyarev A.B., Khramushin V.N.
    High performance computations on hybrid systems: will "grand challenges" be solved?
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 429-437

    Based on CFD computations we provide the analysis of the possibilities for using modern hybrid distributed computational environments for large complex system simulation. We argue that only multilevel approach supported by new mathematical models of transport properties, dynamical representation of the problem with transport and internal processes separated, and modern paradigm of programming, taking into account specific properties of heterogeneous system, will make it possible to scale the problem effectively.

    Views (last year): 7. Citations: 8 (RSCI).
  9. Petrov I.B., Muratov M.V., Favorskaya A.V., Biryukov V.A., Sannikov A.V.
    Numerical modeling of straight 3D exploration seismology problems with use of grid-characteristic method on unstructured tetrahedral meshes
    Computer Research and Modeling, 2015, v. 7, no. 4, pp. 875-887

    The article contains results of 3D modeling of seismic responses from fractured geological formations with use of grid-characteristic method on unstructured tetrahedral meshes with use of high-performance computation systems. The method being used is the most suitable for modeling of heterogenic domains exploration seismology problems. The use of unstructured tetrahedral meshes allows modeling of different geometry and space orientation fractures. That gives us possibility to solve the problems in the most real set.

    Views (last year): 7. Citations: 1 (RSCI).
  10. Astakhov N.S., Baginyan A.S., Belov S.D., Dolbilov A.G., Golunov A.O., Gorbunov I.N., Gromova N.I., Kashunin I.A., Korenkov V.V., Mitsyn V.V., Shmatov S.V., Strizh T.A., Tikhonenko E.A., Trofimov V.V., Voitishin N.N., Zhiltsov V.E.
    JINR TIER-1-level computing system for the CMS experiment at LHC: status and perspectives
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 455-462

    The Compact Muon Solenoid (CMS) is a high-performance general-purpose detector at the Large Hadron Collider (LHC) at CERN. A distributed data analysis system for processing and further analysis of CMS experimental data has been developed and this model foresees the obligatory usage of modern grid-technologies. The CMS Computing Model makes use of the hierarchy of computing centers (Tiers). The Joint Institute for Nuclear Research (JINR) takes an active part in the CMS experiment. In order to provide a proper computing infrastructure for the CMS experiment at JINR and for Russian institutes collaborating in CMS, Tier-1 center for the CMS experiment is constructing at JINR. The main tasks and services of the CMS Tier-1 at JINR are described. The status and perspectives of the Tier1 center for the CMS experiment at JINR are presented.

    Views (last year): 3. Citations: 2 (RSCI).
Pages: next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"