Результаты поиска по 'mathematical model':
Найдено статей: 310
  1. Dementiev V.E.
    The model of interference of long waves of economic development
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 649-663

    The article substantiates the need to develop and analyze mathematical models that take into account the mutual influence of long (Kondratiev) waves of economic development. The analysis of the available publications shows that at the model level, the direct and inverse relationships between intersecting long waves are still insufficiently studied. As practice shows, the production of the current long wave can receive an additional impetus for growth from the technologies of the next long wave. The technologies of the next industrial revolution often serve as improving innovations for the industries born of the previous industrial revolution. As a result, the new long wave increases the amplitude of the oscillations of the trajectory of the previous long wave. Such results of the interaction of long waves in the economy are similar to the effects of interference of physical waves. The mutual influence of the recessions and booms of the economies of different countries gives even more grounds for comparing the consequences of this mutual influence with the interference of physical waves. The article presents a model for the development of the technological base of production, taking into account the possibilities of combining old and new technologies. The model consists of several sub-models. The use of a different mathematical description for the individual stages of updating the technological base of production allows us to take into account the significant differences between the successive phases of the life cycle of general purpose technologies, considered in modern literature as the technological basis of industrial revolutions. One of these phases is the period of formation of the appropriate infrastructure necessary for the intensive diffusion of new general purpose technology, for the rapid development of industries using this technology. The model is used for illustrative calculations with the values of exogenous parameters corresponding to the logic of changing long waves. Despite all the conditionality of the illustrative calculations, the configuration of the curve representing the change in the return on capital in the simulated period is close to the configuration of the real trajectory of the return on private fixed assets of the US economy in the period 1982-2019. The factors that remained outside the scope of the presented model, but which are advisable to take into account when describing the interference of long waves of economic development, are indicated.

  2. Safiullina L.F., Gubaydullin I.M.
    Analysis of the identifiability of the mathematical model of propane pyrolysis
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1045-1057

    The article presents the numerical modeling and study of the kinetic model of propane pyrolysis. The study of the reaction kinetics is a necessary stage in modeling the dynamics of the gas flow in the reactor.

    The kinetic model of propane pyrolysis is a nonlinear system of ordinary differential equations of the first order with parameters, the role of which is played by the reaction rate constants. Math modeling of processes is based on the use of the mass conservation law. To solve an initial (forward) problem, implicit methods for solving stiff ordinary differential equation systems are used. The model contains 60 input kinetic parameters and 17 output parameters corresponding to the reaction substances, of which only 9 are observable. In the process of solving the problem of estimating parameters (inverse problem), there is a question of non-uniqueness of the set of parameters that satisfy the experimental data. Therefore, before solving the inverse problem, the possibility of determining the parameters of the model is analyzed (analysis of identifiability).

    To analyze identifiability, we use the orthogonal method, which has proven itself well for analyzing models with a large number of parameters. The algorithm is based on the analysis of the sensitivity matrix by the methods of differential and linear algebra, which shows the degree of dependence of the unknown parameters of the models on the given measurements. The analysis of sensitivity and identifiability showed that the parameters of the model are stably determined from a given set of experimental data. The article presents a list of model parameters from most to least identifiable. Taking into account the analysis of the identifiability of the mathematical model, restrictions were introduced on the search for less identifiable parameters when solving the inverse problem.

    The inverse problem of estimating the parameters was solved using a genetic algorithm. The article presents the found optimal values of the kinetic parameters. A comparison of the experimental and calculated dependences of the concentrations of propane, main and by-products of the reaction on temperature for different flow rates of the mixture is presented. The conclusion about the adequacy of the constructed mathematical model is made on the basis of the correspondence of the results obtained to physicochemical laws and experimental data.

  3. Ansori Moch.F., Sumarti N.N., Sidarto K.A., Gunadi I.I.
    An Algorithm for Simulating the Banking Network System and Its Application for Analyzing Macroprudential Policy
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1275-1289

    Modeling banking systems using a network approach has received growing attention in recent years. One of the notable models is that developed by Iori et al, who proposed a banking system model for analyzing systemic risks in interbank networks. The model is built based on the simple dynamics of several bank balance sheet variables such as deposit, equity, loan, liquid asset, and interbank lending (or borrowing) in the form of difference equations. Each bank faces random shocks in deposits and loans. The balance sheet is updated at the beginning or end of each period. In the model, banks are grouped into either potential lenders or borrowers. The potential borrowers are those that have lack of liquidity and the potential lenders are those which have excess liquids after dividend payment and channeling new investment. The borrowers and the lenders are connected through the interbank market. Those borrowers have some percentage of linkage to random potential lenders for borrowing funds to maintain their safety net of the liquidity. If the demand for borrowing funds can meet the supply of excess liquids, then the borrower bank survives. If not, they are deemed to be in default and will be removed from the banking system. However, in their paper, most part of the interbank borrowing-lending mechanism is described qualitatively rather than by detailed mathematical or computational analysis. Therefore, in this paper, we enhance the mathematical parts of borrowing-lending in the interbank market and present an algorithm for simulating the model. We also perform some simulations to analyze the effects of the model’s parameters on banking stability using the number of surviving banks as the measure. We apply this technique to analyze the effects of a macroprudential policy called loan-to-deposit ratio based reserve requirement for banking stability.

  4. Korepanov V.O., Chkhartishvili A.G., Shumov V.V.
    Game-theoretic and reflexive combat models
    Computer Research and Modeling, 2022, v. 14, no. 1, pp. 179-203

    Modeling combat operations is an urgent scientific and practical task aimed at providing commanders and staffs with quantitative grounds for making decisions. The authors proposed the function of victory in combat and military operations, based on the function of the conflict by G. Tullock and taking into account the scale of combat (military) operations. On a sufficient volume of military statistics, the scale parameter was assessed and its values were found for the tactical, operational and strategic levels. The game-theoretic models «offensive – defense», in which the sides solve the immediate and subsequent tasks, having the formation of troops in one or several echelons, have been investigated. At the first stage of modeling, the solution of the immediate task is found — the breakthrough (holding) of defense points, at the second — the solution of the subsequent task — the defeat of the enemy in the depth of the defense (counterattack and restoration of defense). For the tactical level, using the Nash equilibrium, solutions were found for the closest problem (distribution of the forces of the sides by points of defense) in an antagonistic game according to three criteria: a) breakthrough of the weakest point, b) breakthrough of at least one point, and c) weighted average probability. It is shown that it is advisable for the attacking side to use the criterion of «breaking through at least one point», in which, all other things being equal, the maximum probability of breaking through the points of defense is ensured. At the second stage of modeling for a particular case (the sides are guided by the criterion of breaking through the weakest point when breaking through and holding defense points), the problem of distributing forces and facilities between tactical tasks (echelons) was solved according to two criteria: a) maximizing the probability of breaking through the defense point and the probability of defeating the enemy in depth defense, b) maximizing the minimum value of the named probabilities (the criterion of the guaranteed result). Awareness is an important aspect of combat operations. Several examples of reflexive games (games characterized by complex mutual awareness) and information management are considered. It is shown under what conditions information control increases the player’s payoff, and the optimal information control is found.

  5. Aksenov A.A., Kashirin V.S., Timushev S.F., Shaporenko E.V.
    Development of acoustic-vortex decomposition method for car tyre noise modelling
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 979-993

    Road noise is one of the key issues in maintaining high environmental standards. At speeds between 50 and 120 km/h, tires are the main source of noise generated by a moving vehicle. It is well known that either the interaction between the tire tread and the road surface or some internal dynamic effects are responsible for tire noise and vibration. This paper discusses the application of a new method for modelling the generation and propagation of sound during tire motion, based on the application of the so-called acoustic-vortex decomposition. Currently, the application of the Lighthill equation and the aeroacoustics analogy are the main approaches used to model tire noise. The aeroacoustics analogy, in solving the problem of separating acoustic and vortex (pseudo-sound) modes of vibration, is not a mathematically rigorous formulation for deriving the source (righthand side) of the acoustic wave equation. In the development of the acoustic-vortex decomposition method, a mathematically rigorous transformation of the equations of motion of a compressible medium is performed to obtain an inhomogeneous wave equation with respect to static enthalpy pulsations with a source term that de-pends on the velocity field of the vortex mode. In this case, the near-field pressure fluctuations are the sum of acoustic fluctuations and pseudo-sound. Thus, the acoustic-vortex decomposition method allows to adequately modeling the acoustic field and the dynamic loads that generate tire vibration, providing a complete solution to the problem of modelling tire noise, which is the result of its turbulent flow with the generation of vortex sound, as well as the dynamic loads and noise emission due to tire vibration. The method is first implemented and test-ed in the FlowVision software package. The results obtained with FlowVision are compared with those obtained with the LMS Virtual.Lab Acoustics package and a number of differences in the acoustic field are highlighted.

  6. Shardyko I.V., Kopylov V.M., Volnyakov K.A.
    Design, modeling, and control of a variable stiffness joint based on a torsional magnetic spring
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1323-1347

    Industrial robots have made it possible for robotics to become a worldwide discipline both in economy and in science. However, their capabilities are limited, especially regarding contact tasks where it is required to regulate or at least limit contact forces. At one point, it was noticed that elasticity in the joint transmission, which was treated as a drawback previously, is actually helpful in this regard. This observation led to the introduction of elastic joint robots that are well-suited to contact tasks and cooperative behavior in particular, so they become more and more widespread nowadays. Many researchers try to implement such devices not with trivial series elastic actuators (SEA) but with more sophisticated variable stiffness actuators (VSA) that can regulate their own mechanical stiffness. All elastic actuators demonstrate shock robustness and safe interaction with external objects to some extent, but when stiffness may be varied, it provides additional benefits, e. g., in terms of energy efficiency and task adaptability. Here, we present a novel variable stiffness actuator with a magnetic coupler as an elastic element. Magnetic transmission is contactless and thus advantageous in terms of robustness to misalignment. In addition, the friction model of the transmission becomes less complex. It also has milder stiffness characteristic than typical mechanical nonlinear springs, moreover, the stiffness curve has a maximum after which it descends. Therefore, when this maximum torque is achieved, the coupler slips, and a new pair of poles defines the equilibrium position. As a result, the risk of damage is smaller for this design solution. The design of the joint is thoroughly described, along with its mathematical model. Finally, the control system is also proposed, and simulation tests confirm the design ideas.

  7. Sofronova E.A., Diveev A.I., Kazaryan D.E., Konstantinov S.V., Daryina A.N., Seliverstov Y.A., Baskin L.A.
    Utilizing multi-source real data for traffic flow optimization in CTraf
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 147-159

    The problem of optimal control of traffic flow in an urban road network is considered. The control is carried out by varying the duration of the working phases of traffic lights at controlled intersections. A description of the control system developed is given. The control system enables the use of three types of control: open-loop, feedback and manual. In feedback control, road infrastructure detectors, video cameras, inductive loop and radar detectors are used to determine the quantitative characteristics of current traffic flow state. The quantitative characteristics of the traffic flows are fed into a mathematical model of the traffic flow, implemented in the computer environment of an automatic traffic flow control system, in order to determine the moments for switching the working phases of the traffic lights. The model is a system of finite-difference recurrent equations and describes the change in traffic flow on each road section at each time step, based on retrived data on traffic flow characteristics in the network, capacity of maneuvers and flow distribution through alternative maneuvers at intersections. The model has scaling and aggregation properties. The structure of the model depends on the structure of the graph of the controlled road network. The number of nodes in the graph is equal to the number of road sections in the considered network. The simulation of traffic flow changes in real time makes it possible to optimally determine the duration of traffic light operating phases and to provide traffic flow control with feedback based on its current state. The system of automatic collection and processing of input data for the model is presented. In order to model the states of traffic flow in the network and to solve the problem of optimal traffic flow control, the CTraf software package has been developed, a brief description of which is given in the paper. An example of the solution of the optimal control problem of traffic flows on the basis of real data in the road network of Moscow is given.

  8. Sergienko A.V., Akimenko S.S., Karpov A.A., Myshlyavtsev A.V.
    Influence of the simplest type of multiparticle interactions on the example of a lattice model of an adsorption layer
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 445-458

    Self-organization of molecules on a solid surface is one of the promising directions for materials generation with unique magnetic, electrical, and optical properties. They can be widely used in fields such as electronics, optoelectronics, catalysis, and biology. However, the structure and physicochemical properties of adsorbed molecules are influenced by many parameters that must be taken into account when studying the self-organization of molecules. Therefore, the experimental study of such materials is expensive, and quite often it is difficult for various reasons. In such situations, it is advisable to use the mathematical modeling. One of the parameters in the considered adsorption systems is the multiparticle interaction, which is often not taken into account in simulations due to the complexity of the calculations. In this paper, we evaluated the influence of multiparticle interactions on the total energy of the system using the transfer-matrix method and the Materials Studio software package. The model of monocentric adsorption with nearest interactions on a triangular lattice was taken as the basis. Phase diagrams in the ground state were constructed and a number of thermodynamic characteristics (coverage $\theta$, entropy $S$, susceptibility $\xi$) were calculated at nonzero temperatures. The formation of all four ordered structures lattice gas with $\theta=0$, $(\sqrt{3} \times \sqrt{3}) R30^{\circ} with $\theta = \frac{1}{3}, $\sqrt{3} \times \sqrt{3}R^{*}30^{\circ} with $\theta = 23$, and densest phase with $\theta = 1$ in a system with only pairwise interactions, and the absence of the phase  $(\sqrt{3}\times \sqrt{3}) R30^\circ$ when only three-body interactions are taken into account, were found. Using the example of an atomistic model of the trimesic acid adsorption layer by quantum mechanical methods we determined that in such a system the contribution of multiparticle interactions is 11.44% of the pair interactions energy. There are only quantitative differences at such values. The transition region from the  $(\sqrt{3} \times \sqrt{3}) R^{*}30^\circ$ to the densest phase shifts to the right by 38.25% at $\frac{\varepsilon}{RT} = 4$ and to the left by 23.46% at $\frac{\varepsilon}{RT} = −2$.

  9. Kolobov A.V., Polezhaev A.A.
    Influence of random malignant cell motility on growing tumor front stability
    Computer Research and Modeling, 2009, v. 1, no. 2, pp. 225-232

    Chemotaxis plays an important role in morphogenesis and processes of structure formation in nature. Both unicellular organisms and single cells in tissue demonstrate this property. In vitro experiments show that many types of transformed cell, especially metastatic competent, are capable for directed motion in response usually to chemical signal. There is a number of theoretical papers on mathematical modeling of tumour growth and invasion using Keller-Segel model for the chemotactic motility of cancer cells. One of the crucial questions for using the chemotactic term in modelling of tumour growth is a lack of reliable quantitative estimation of its parameters. The 2-D mathematical model of tumour growth and invasion, which takes into account only random cell motility and convective fluxes in compact tissue, has showed that due to competitive mechanism tumour can grow toward sources of nutrients in absence of chemotactic cell motility.

    Views (last year): 5. Citations: 7 (RSCI).
  10. Tsyganov M.A., Biktashev V.N.
    Soliton and half-soliton interaction of solitary waves in excitable media with non-linear cross-diffusion
    Computer Research and Modeling, 2009, v. 1, no. 1, pp. 109-115

    We have studied properties of non-linear waves in a mathematical model of a predator – prey system with taxis. We demonstrate that, for systems with negative and positive taxis there typically exists a large region in the parameter space, where the waves demonstrate quasi-soliton interaction; colliding waves can penetrate through each other, and waves can also reflect from impermeable boundaries. In this paper, we use numerical simulations to demonstrate also a new wave phenomenon — a half-soliton interaction of waves, when of two colliding waves, one annihilates and the other continues to propagate. We show that this effect depends on the «ages» or, equivalently, «widths» of the colliding waves.

    Views (last year): 3.
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"