Результаты поиска по 'mathematical modelling':
Найдено статей: 324
  1. This work considers the problem of optimal control galvanic process in multianode bath. The nonstationary mathematical model of galvanic process, which considers change concentrations of electrolyte components, is developed. Demonstrated rationale for the choice of the form to extremal control on example chrome galvanic process in the standard electrolyte.

    Views (last year): 4. Citations: 4 (RSCI).
  2. Yudin I.P., Panacik V.A., Perepelkin E.E., Petersky A.N., Polyakova R.V.
    Peculiar features of numerical modeling of the modified spectrometer magnet field
    Computer Research and Modeling, 2015, v. 7, no. 1, pp. 93-105

    In this work, we propose a method of the numerical solution of the magnetostatic problem for domains with boundaries containing corners. With the help of this numerical method, the magnetic systems of rectangular configuration were simulated with high accuracy. In particular, the calculations of some modifications of the magnetic system SP-40 used in the NIS JINR experimental installation, are presented. The basic feature of such a magnet is a rectangular aperture, hence, the area in which the boundary-value problem is solved, has a smooth border everywhere, except for a finite number of angular points in the vicinity of which the border is formed by crossing two smooth curves. In such cases the solution to the problem or derivatives of the solution can have a special feature. A behavior of the magnetic field in the vicinity of an angular point is investigated, and the configuration of the magnet was chosen numerically. The width of the area of homogeneity of the magnetic field increased from 0.5 m up to 1.0 m, i. e. twice.

    Citations: 1 (RSCI).
  3. Zhukov B.A., Shchukina N.A.
    The approximate model of plane static problems of the nonlinear elasticity theory
    Computer Research and Modeling, 2015, v. 7, no. 4, pp. 889-896

    This article is dedicated to the construction of the approximate mathematical model of the nonlinear elasticity theory for plane strain state. The third order effects method applied to symbolic computing. There three boundary value problems for the first, the second and the third order effects has been obtained within this method, which gets ability to use well-elaborated methods of the linear elasticity theory for the solution of specific problems. This method can be applied for analytical solving of plane problems of nonlinear elasticity theory of stress concentration around holes in mathematical package Maple. Considered example of the triangular hole. The influence of external loads on the stress concentration factor.

    Views (last year): 4. Citations: 2 (RSCI).
  4. Perepelkin E.E., Nyanina L.A., Polyakova R.V., Sysoev P.N., Panacik V.A., Yudin I.P.
    Construction of adaptive mesh in the domain with boundary «corner point» of ferromagnetic in the numerical simulation of magnetic systems
    Computer Research and Modeling, 2016, v. 8, no. 1, pp. 89-99

    At numerical solving of the boundary-value problem of magnetostatic in a domain with a boundary corner point, a question of accuracy of the obtained solution near the corner point of ferromagnetic arises [Zhidkov, Perepelkin, 2001]. Near the corner point an essential growth of the module of the magnetic field can take place, which leads to the necessity of constructing special numerical algorithms when solving the boundary-value problem. This work represents an algorithm of constructing an adaptive mesh in the domain with a boundary corner point of ferromagnetic taking into account the character of behaviour of the solution of the boundary-value problem. An example of calculating a model problem in the domain containing a corner point is given.

    Views (last year): 2.
  5. Zubkova E.V., Zhukova L.A., Frolov P.V., Shanin V.N.
    A.S. Komarov’s publications about cellular automata modelling of the population-ontogenetic development in plants: a review
    Computer Research and Modeling, 2016, v. 8, no. 2, pp. 285-295

    The possibilities of cellular automata simulation applied to herbs and dwarf shrubs are described. Basicprinciples of discrete description of the ontogenesis of plants on which the mathematical modeling based are presents. The review discusses the main research results obtained with the use of models that revealing the patterns of functioning of populations and communities. The CAMPUS model and the results of computer experiment to study the growth of two clones of lingonberry with different geometry of the shoots are described. The paper is dedicated to the works of the founder of the direction of prof. A. S. Komarov. A list of his major publications on this subject is given.

    Views (last year): 2. Citations: 6 (RSCI).
  6. Gubanov S.M., Durnovtsev M.I., Kartavih A.A., Krainov A.Y.
    Numerical simulation of air cooling the tank to desublimate components of the gas mixture
    Computer Research and Modeling, 2016, v. 8, no. 3, pp. 521-529

    For the production of purified final product in chemical engineering used the process of desublimation. For this purpose, the tank is cooled by liquid nitrogen or cold air. The mixture of gases flows inside the tank and is cooled to the condensation or desublimation temperature some components of the gas mixture. The condensed components are deposited on the walls of the tank. The article presents a mathematical model to calculate the cooling air tanks for desublimation of vapours. A mathematical model based on equations of gas dynamics and describes the movement of cooled air in the duct and the heat exchanger with heat exchange and friction. The heat of the phase transition is taken into account in the boundary condition for the heat equation by setting the heat flux. Heat transfer in the walls of the pipe and in the tank wall is described by the nonstationary heat conduction equations. The solution of the system of equations is carried out numerically. The equations of gas dynamics are solved by the method of S. K. Godunov. The heat equation are solved by an implicit finite difference scheme. The article presents the results of calculations of the cooling of two successively installed tanks. The initial temperature of the tanks is equal to 298 K. Cold air flows through the tubing, through the heat exchanger of the first tank, then through conduit to the heat exchanger second tank. During the 20 minutes of tank cool down to operating temperature. The temperature of the walls of the tanks differs from the air temperature not more than 1 degree. The flow of cooling air allows to maintain constant temperature of the walls of the tank in the process of desublimation components from a gas mixture. The results of analytical evaluation of the time of cooling tank and temperature difference between the tank walls and air with the vapor desublimation. Analytical assessment is based on determining the time of heat relaxation temperature of the tank walls. The results of evaluations are satisfactorily coincide with the results of calculations by the present model. The proposed approach allows calculating the cooling tanks with a flow of cold air supplied via the pipeline system.

    Views (last year): 3. Citations: 1 (RSCI).
  7. Gorshkov A.V., Prosviryakov Y.Y.
    Layered Bénard–Marangoni convection during heat transfer according to the Newton’s law of cooling
    Computer Research and Modeling, 2016, v. 8, no. 6, pp. 927-940

    The paper considers mathematical modeling of layered Benard–Marangoni convection of a viscous incompressible fluid. The fluid moves in an infinitely extended layer. The Oberbeck–Boussinesq system describing layered Benard–Marangoni convection is overdetermined, since the vertical velocity is zero identically. We have a system of five equations to calculate two components of the velocity vector, temperature and pressure (three equations of impulse conservation, the incompressibility equation and the heat equation). A class of exact solutions is proposed for the solvability of the Oberbeck–Boussinesq system. The structure of the proposed solution is such that the incompressibility equation is satisfied identically. Thus, it is possible to eliminate the «extra» equation. The emphasis is on the study of heat exchange on the free layer boundary, which is considered rigid. In the description of thermocapillary convective motion, heat exchange is set according to the Newton’s law of cooling. The application of this heat distribution law leads to the third-kind initial-boundary value problem. It is shown that within the presented class of exact solutions to the Oberbeck–Boussinesq equations the overdetermined initial-boundary value problem is reduced to the Sturm–Liouville problem. Consequently, the hydrodynamic fields are expressed using trigonometric functions (the Fourier basis). A transcendental equation is obtained to determine the eigenvalues of the problem. This equation is solved numerically. The numerical analysis of the solutions of the system of evolutionary and gradient equations describing fluid flow is executed. Hydrodynamic fields are analyzed by a computational experiment. The existence of counterflows in the fluid layer is shown in the study of the boundary value problem. The existence of counterflows is equivalent to the presence of stagnation points in the fluid, and this testifies to the existence of a local extremum of the kinetic energy of the fluid. It has been established that each velocity component cannot have more than one zero value. Thus, the fluid flow is separated into two zones. The tangential stresses have different signs in these zones. Moreover, there is a fluid layer thickness at which the tangential stresses at the liquid layer equal to zero on the lower boundary. This physical effect is possible only for Newtonian fluids. The temperature and pressure fields have the same properties as velocities. All the nonstationary solutions approach the steady state in this case.

    Views (last year): 10. Citations: 3 (RSCI).
  8. Kalashnikov S.V., Krivoschapov A.A., Mitin A.L., Nikolaev N.V.
    Computational investigation of aerodynamic performance of the generic flying-wing aircraft model using FlowVision computational code
    Computer Research and Modeling, 2017, v. 9, no. 1, pp. 67-74

    Modern approach to modernization of the experimental techniques involves design of mathematical models of the wind-tunnel, which are also referred to as Electronic of Digital Wind-Tunnels. They are meant to supplement experimental data with computational analysis. Using Electronic Wind-Tunnels is supposed to provide accurate information on aerodynamic performance of an aircraft basing on a set of experimental data, to obtain agreement between data from different test facilities and perform comparison between computational results for flight conditions and data with the presence of support system and test section.

    Completing this task requires some preliminary research, which involves extensive wind-tunnel testing as well as RANS-based computational research with the use of supercomputer technologies. At different stages of computational investigation one may have to model not only the aircraft itself but also the wind-tunnel test section and the model support system. Modelling such complex geometries will inevitably result in quite complex vertical and separated flows one will have to simulate. Another problem is that boundary layer transition is often present in wind-tunnel testing due to quite small model scales and therefore low Reynolds numbers.

    In the current article the first stage of the Electronic Wind-Tunnel design program is covered. This stage involves computational investigation of aerodynamic characteristics of the generic flying-wing UAV model previously tested in TsAGI T-102 wind-tunnel. Since this stage is preliminary the model was simulated without taking test-section and support system geometry into account. The boundary layer was considered to be fully turbulent.

    For the current research FlowVision computational code was used because of its automatic grid generation feature and stability of the solver when simulating complex flows. A two-equation k–ε turbulence model was used with special wall functions designed to properly capture flow separation. Computed lift force and drag force coefficients for different angles-of-attack were compared to the experimental data.

    Views (last year): 10. Citations: 1 (RSCI).
  9. Andreeva A.A., Nikolaev A.V., Lobanov A.I.
    Analysis of point model of fibrin polymerization
    Computer Research and Modeling, 2017, v. 9, no. 2, pp. 247-258

    Functional modeling of blood clotting and fibrin-polymer mesh formation is of a significant value for medical and biophysics applications. Despite the fact of some discrepancies present in simplified functional models their results are of the great interest for the experimental science as a handy tool of the analysis for research planning, data processing and verification. Under conditions of the good correspondence to the experiment functional models can be used as an element of the medical treatment methods and biophysical technologies. The aim of the paper in hand is a modeling of a point system of the fibrin-polymer formation as a multistage polymerization process with a sol-gel transition at the final stage. Complex-value Rosenbroke method of second order (CROS) used for computational experiments. The results of computational experiments are presented and discussed. It was shown that in the physiological range of the model coefficients there is a lag period of approximately 20 seconds between initiation of the reaction and fibrin gel appearance which fits well experimental observations of fibrin polymerization dynamics. The possibility of a number of the consequent $(n = 1–3)$ sol-gel transitions demonstrated as well. Such a specific behavior is a consequence of multistage nature of fibrin polymerization process. At the final stage the solution of fibrin oligomers of length 10 can reach a semidilute state, leading to an extremely fast gel formation controlled by oligomers’ rotational diffusion. Otherwise, if the semidilute state is not reached the gel formation is controlled by significantly slower process of translational diffusion. Such a duality in the sol-gel transition led authors to necessity of introduction of a switch-function in an equation for fibrin-polymer formation kinetics. Consequent polymerization events can correspond to experimental systems where fibrin mesh formed gets withdrawn from the volume by some physical process like precipitation. The sensitivity analysis of presented system shows that dependence on the first stage polymerization reaction constant is non-trivial.

    Views (last year): 8.
  10. Golubev V.I., Khokhlov N.I.
    Estimation of anisotropy of seismic response from fractured geological objects
    Computer Research and Modeling, 2018, v. 10, no. 2, pp. 231-240

    Seismic survey process is the common method of prospecting and exploration of deposits: oil and natural gas. Invented at the beginning of the XX century, it has received significant development and is currently used by almost all service oil companies. Its main advantages are the acceptable cost of fieldwork (in comparison with drilling wells) and the accuracy of estimating the characteristics of the subsurface area. However, with the discovery of non-traditional deposits (for example, the Arctic shelf, the Bazhenov Formation), the task of improving existing and creating new seismic data processing technologies became important. Significant development in this direction is possible with the use of numerical simulation of the propagation of seismic waves in realistic models of the geological medium, since it is possible to specify an arbitrary internal structure of the medium with subsequent evaluation of the synthetic signal-response.

    The present work is devoted to the study of spatial dynamic processes occurring in geological medium containing fractured inclusions in the process of seismic exploration. The authors constructed a three-dimensional model of a layered massif containing a layer of fluid-saturated cracks, which makes it possible to estimate the signal-response when the structure of the inhomogeneous inclusion is varied. To describe physical processes, we use a system of equations for a linearly elastic body in partial derivatives of the second order, which is solved numerically by a grid-characteristic method on hexahedral grid. In this case, the crack planes are identified at the stage of constructing the grid, and further an additional correction is used to ensure a correct seismic response for the model parameters typical for geological media.

    In the paper, three-component area seismograms with a common explosion point were obtained. On their basis, the effect of the structure of a fractured medium on the anisotropy of the seismic response recorded on the day surface at a different distance from the source was estimated. It is established that the kinematic characteristics of the signal remain constant, while the dynamic characteristics for ordered and disordered models can differ by tens of percents.

    Views (last year): 11. Citations: 4 (RSCI).
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"