Результаты поиска по 'mechanical system':
Найдено статей: 69
  1. Malsagov M.X., Ougolnitsky G.A., Usov A.B.
    Struggle against economic corruption in resource allocation
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 173-185

    A dynamic game theoretic model of struggle against corruption in resource allocation is considered. It is supposed that the system of resource allocation includes one principal, one or several supervisors, and several agents. The relations between them are hierarchical: the principal influences to the supervisors, and they in turn exert influence on the agents. It is assumed that the supervisor can be corrupted. The agents propose bribes to the supervisor who in exchange allocates additional resources to them. It is also supposed that the principal is not corrupted and does not have her own purposes. The model is investigated from the point of view of the supervisor and the agents. From the point of view of agents a non-cooperative game arises with a set of Nash equilibria as a solution. The set is found analytically on the base of Pontryagin maximum principle for the specific class of model functions. From the point of view of the supervisor a hierarchical Germeyer game of the type Г2t is built, and the respective algorithm of its solution is proposed. The punishment strategy is found analytically, and the reward strategy is built numerically on the base of a discrete analogue of the initial continuous- time model. It is supposed that all agents can change their strategies in the same time instants only a finite number of times. Thus, the supervisor can maximize his objective function of many variables instead of maximization of the objective functional. A method of qualitatively representative scenarios is used for the solution. The idea of this method consists in that it is possible to choose a very small number of scenarios among all potential ones that represent all qualitatively different trajectories of the system dynamics. These scenarios differ in principle while all other scenarios yield no essentially new results. Then a complete enumeration of the qualitatively representative scenarios becomes possible. After that, the supervisor reports to the agents the rewardpunishment control mechanism.

    Views (last year): 33. Citations: 1 (RSCI).
  2. Grebenkin I.V., Alekseenko A.E., Gaivoronskiy N.A., Ignatov M.G., Kazennov A.M., Kozakov D.V., Kulagin A.P., Kholodov Y.A.
    Ensemble building and statistical mechanics methods for MHC-peptide binding prediction
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1383-1395

    The proteins of the Major Histocompatibility Complex (MHC) play a key role in the functioning of the adaptive immune system, and the identification of peptides that bind to them is an important step in the development of vaccines and understanding the mechanisms of autoimmune diseases. Today, there are a number of methods for predicting the binding of a particular MHC allele to a peptide. One of the best such methods is NetMHCpan-4.0, which is based on an ensemble of artificial neural networks. This paper presents a methodology for qualitatively improving the underlying neural network underlying NetMHCpan-4.0. The proposed method uses the ensemble construction technique and adds as input an estimate of the Potts model taken from static mechanics, which is a generalization of the Ising model. In the general case, the model reflects the interaction of spins in the crystal lattice. Within the framework of the proposed method, the model is used to better represent the physical nature of the interaction of proteins included in the complex. To assess the interaction of the MHC + peptide complex, we use a two-dimensional Potts model with 20 states (corresponding to basic amino acids). Solving the inverse problem using data on experimentally confirmed interacting pairs, we obtain the values of the parameters of the Potts model, which we then use to evaluate a new pair of MHC + peptide, and supplement this value with the input data of the neural network. This approach, combined with the ensemble construction technique, allows for improved prediction accuracy, in terms of the positive predictive value (PPV) metric, compared to the baseline model.

  3. Perevarukha A.Y.
    Models of population process with delay and the scenario for adaptive resistance to invasion
    Computer Research and Modeling, 2022, v. 14, no. 1, pp. 147-161

    Changes in abundance for emerging populations can develop according to several dynamic scenarios. After rapid biological invasions, the time factor for the development of a reaction from the biotic environment will become important. There are two classic experiments known in history with different endings of the confrontation of biological species. In Gause’s experiments with ciliates, the infused predator, after brief oscillations, completely destroyed its resource, so its $r$-parameter became excessive for new conditions. Its own reproductive activity was not regulated by additional factors and, as a result, became critical for the invader. In the experiments of the entomologist Uchida with parasitic wasps and their prey beetles, all species coexisted. In a situation where a population with a high reproductive potential is regulated by several natural enemies, interesting dynamic effects can occur that have been observed in phytophages in an evergreen forest in Australia. The competing parasitic hymenoptera create a delayed regulation system for rapidly multiplying psyllid pests, where a rapid increase in the psyllid population is allowed until the pest reaches its maximum number. A short maximum is followed by a rapid decline in numbers, but minimization does not become critical for the population. The paper proposes a phenomenological model based on a differential equation with a delay, which describes a scenario of adaptive regulation for a population with a high reproductive potential with an active, but with a delayed reaction with a threshold regulation of exposure. It is shown that the complication of the regulation function of biotic resistance in the model leads to the stabilization of the dynamics after the passage of the minimum number by the rapidly breeding species. For a flexible system, transitional regimes of growth and crisis lead to the search for a new equilibrium in the evolutionary confrontation.

  4. Bratsun D.A., Zakharov A.P., Pismen L.M.
    Multiscale mathematical modeling occurrence and growth of a tumour in an epithelial tissue
    Computer Research and Modeling, 2014, v. 6, no. 4, pp. 585-604

    In this paper we propose a mathematical model of cancer tumour occurrence in a quasi twodimensional epithelial tissue. Basic model of the epithelium growth describes the appearance of intensive movement and growth of tissue when it is damaged. The model includes the effects of division of cells and intercalation. It is assumed that the movement of cells is caused by the wave of mitogen-activated protein kinase (MAPK), which in turn activated by the chemo-mechanical signal propagating along tissue due to its local damage. In this paper it is assumed that cancer cells arise from local failure of spatial synchronization of circadian rhythms. The study of the evolutionary dynamics of the model could determine the chemo-physical properties of a tumour, and spatial relationship between the occurrence of cancer cells and development of the entire tissue parameters coordinating its evolution through the exchange of chemical and mechanical signals.

    Views (last year): 10. Citations: 12 (RSCI).
  5. Golov A.V., Simakov S.S.
    Mathematical model of respiratory regulation during hypoxia and hypercapnia
    Computer Research and Modeling, 2017, v. 9, no. 2, pp. 297-310

    Transport of respiratory gases by respiratory and circulatory systems is one of the most important processes associated with living conditions of the human body. Significant and/or long-term deviations of oxygen and carbon dioxide concentrations from the normal values in blood can be a reason of significant pathological changes with irreversible consequences: lack of oxygen (hypoxia and ischemic events), the change in the acidbase balance of blood (acidosis or alkalosis), and others. In the context of a changing external environment and internal conditions of the body the action of its regulatory systems aimed at maintaining homeostasis. One of the major mechanisms for maintaining concentrations (partial pressures) of oxygen and carbon dioxide in the blood at a normal level is the regulation of minute ventilation, respiratory rate and depth of respiration, which is caused by the activity of the central and peripheral regulators.

    In this paper we propose a mathematical model of the regulation of pulmonary ventilation parameter. The model is used to calculate the minute ventilation adaptation during hypoxia and hypercapnia. The model is developed using a single-component model of the lungs, and biochemical equilibrium conditions of oxygen and carbon dioxide in the blood and the alveolar lung volume. A comparison with laboratory data is performed during hypoxia and hypercapnia. Analysis of the results shows that the model reproduces the dynamics of minute ventilation during hypercapnia with sufficient accuracy. Another result is that more accurate model of regulation of minute ventilation during hypoxia should be developed. The factors preventing from satisfactory accuracy are analysed in the final section.

    Respiratory function is one of the main limiting factors of the organism during intense physical activities. Thus, it is important characteristic of high performance sport and extreme physical activity conditions. Therefore, the results of this study have significant application value in the field of mathematical modeling in sport. The considered conditions of hypoxia and hypercapnia are partly reproduce training at high altitude and at hypoxia conditions. The purpose of these conditions is to increase the level of hemoglobin in the blood of highly qualified athletes. These conditions are the only admitted by sport committees.

    Views (last year): 16.
  6. Naumov I.V., Otmakhova Y.S., Krasnykh S.S.
    Methodological approach to modeling and forecasting the impact of the spatial heterogeneity of the COVID-19 spread on the economic development of Russian regions
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 629-648

    The article deals with the development of a methodological approach to forecasting and modeling the socioeconomic consequences of viral epidemics in conditions of heterogeneous economic development of territorial systems. The relevance of the research stems from the need for rapid mechanisms of public management and stabilization of adverse epidemiological situation, taking into account the spatial heterogeneity of the spread of COVID-19, accompanied by a concentration of infection in large metropolitan areas and territories with high economic activity. The aim of the work is to substantiate a methodology to assess the spatial heterogeneity of the spread of coronavirus infection, find poles of its growth, emerging spatial clusters and zones of their influence with the assessment of inter-territorial relationships, as well as simulate the effects of worsening epidemiological situation on the dynamics of economic development of regional systems. The peculiarity of the developed approach is the spatial clustering of regional systems by the level of COVID-19 incidence, conducted using global and local spatial autocorrelation indices, various spatial weight matrices, and L.Anselin mutual influence matrix based on the statistical information of the Russian Federal State Statistics Service. The study revealed a spatial cluster characterized by high levels of infection with COVID-19 with a strong zone of influence and stable interregional relationships with surrounding regions, as well as formed growth poles which are potential poles of further spread of coronavirus infection. Regression analysis using panel data not only confirmed the impact of COVID-19 incidence on the average number of employees in enterprises, the level of average monthly nominal wages, but also allowed to form a model for scenario prediction of the consequences of the spread of coronavirus infection. The results of this study can be used to form mechanisms to contain the coronavirus infection and stabilize socio-economic at macroeconomic and regional level and restore the economy of territorial systems, depending on the depth of the spread of infection and the level of economic damage caused.

  7. Bratsun D.A., Zyuzgin A.V.
    Effect of subcritical excitation of oscillations in stochastic systems with time delay. Part II. Control of fluid equilibrium
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 369-389

    The problem of active control of the mechanical equilibrium of an inhomogeneously heated fluid in a thermosyphon is studied theoretically and experimentally. The control is performed by using a feedback subsystem which inhibits convection by changing the orientation of thermosyphon in space. It is shown that excess feedback leads to the excitation of oscillations which are related to a delay in the controller work. In the presense of noise, the oscillations arise even when deterministic description predicts stationary behaviour. The experimental data and theory are in good agreement.

    Views (last year): 1. Citations: 6 (RSCI).
  8. Giricheva E.E.
    Analysis of taxis-driven instability of a predator–prey system through the plankton community model
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 185-199

    The paper deals with a prey-predator model, which describes the spatiotemporal dynamics of plankton community and the nutrients. The system is described by reaction-diffusion-advection equations in a onedimensional vertical column of water in the surface layer. Advective term of the predator equation represents the vertical movements of zooplankton with velocity, which is assumed to be proportional to the gradient of phytoplankton density. This study aimed to determine the conditions under which these movements (taxis) lead to the spatially heterogeneous structures generated by the system. Assuming diffusion coefficients of all model components to be equal the instability of the system in the vicinity of stationary homogeneous state with respect to small inhomogeneous perturbations is analyzed.

    Necessary conditions for the flow-induced instability were obtained through linear stability analysis. Depending on the local kinetics parameters, increasing the taxis rate leads to Turing or wave instability. This fact is in good agreement with conditions for the emergence of spatial and spatiotemporal patterns in a minimal phytoplankton–zooplankton model after flow-induced instabilities derived by other authors. This mechanism of generating patchiness is more general than the Turing mechanism, which depends on strong conditions on the diffusion coefficients.

    While the taxis exceeding a certain critical value, the wave number corresponding to the fastest growing mode remains unchanged. This value determines the type of spatial structure. In support of obtained results, the paper presents the spatiotemporal dynamics of the model components demonstrating Turing-type pattern and standing wave pattern.

  9. Ansori Moch.F., Sumarti N.N., Sidarto K.A., Gunadi I.I.
    An Algorithm for Simulating the Banking Network System and Its Application for Analyzing Macroprudential Policy
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1275-1289

    Modeling banking systems using a network approach has received growing attention in recent years. One of the notable models is that developed by Iori et al, who proposed a banking system model for analyzing systemic risks in interbank networks. The model is built based on the simple dynamics of several bank balance sheet variables such as deposit, equity, loan, liquid asset, and interbank lending (or borrowing) in the form of difference equations. Each bank faces random shocks in deposits and loans. The balance sheet is updated at the beginning or end of each period. In the model, banks are grouped into either potential lenders or borrowers. The potential borrowers are those that have lack of liquidity and the potential lenders are those which have excess liquids after dividend payment and channeling new investment. The borrowers and the lenders are connected through the interbank market. Those borrowers have some percentage of linkage to random potential lenders for borrowing funds to maintain their safety net of the liquidity. If the demand for borrowing funds can meet the supply of excess liquids, then the borrower bank survives. If not, they are deemed to be in default and will be removed from the banking system. However, in their paper, most part of the interbank borrowing-lending mechanism is described qualitatively rather than by detailed mathematical or computational analysis. Therefore, in this paper, we enhance the mathematical parts of borrowing-lending in the interbank market and present an algorithm for simulating the model. We also perform some simulations to analyze the effects of the model’s parameters on banking stability using the number of surviving banks as the measure. We apply this technique to analyze the effects of a macroprudential policy called loan-to-deposit ratio based reserve requirement for banking stability.

  10. Syzranova N.G., Andruschenko V.A.
    Numerical modeling of physical processes leading to the destruction of meteoroids in the Earth’s atmosphere
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 835-851

    Within the framework of the actual problem of comet-asteroid danger, the physical processes causing the destruction and fragmentation of meteor bodies in the Earth’s atmosphere are numerically investigated. Based on the developed physicalmathematical models that determines the movements of space objects of natural origin in the atmosphere and their interaction with it, the fall of three, one of the largest and by some parameters unusual bolides in the history of meteoritics, are considered: Tunguska, Vitim and Chelyabinsk. Their singularity lies in the absence of any material meteorite remains and craters in the area of the alleged crash site for the first two bodies and the non-detection, as it is assumed, of the main mother body for the third body (due to the too small amount of mass of the fallen fragments compared to the estimated mass). The effect of aerodynamic loads and heat flows on these bodies are studied, which leads to intensive surface mass loss and possible mechanical destruction. The velocities of the studied celestial bodies and the change in their masses are determined from the modernized system of equations of the theory of meteoric physics. An important factor that is taken into account here is the variability of the meteorite mass entrainment parameter under the action of heat fluxes (radiation and convective) along the flight path. The process of fragmentation of meteoroids in this paper is considered within the framework of a progressive crushing model based on the statistical theory of strength, taking into account the influence of the scale factor on the ultimate strength of objects. The phenomena and effects arising at various kinematic and physical parameters of each of these bodies are revealed. In particular, the change in the ballistics of their flight in the denser layers of the atmosphere, consisting in the transition from the fall mode to the ascent mode. At the same time, the following scenarios of the event can be realized: 1) the return of the body back to outer space at its residual velocity greater than the second cosmic one; 2) the transition of the body to the orbit of the Earth satellite at a residual velocity greater than the first cosmic one; 3) at lower values of the residual velocity of the body, its return after some time to the fall mode and falling out at a considerable distance from the intended crash site. It is the implementation of one of these three scenarios of the event that explains, for example, the absence of material traces, including craters, in the case of the Tunguska bolide in the vicinity of the forest collapse. Assumptions about the possibility of such scenarios have been made earlier by other authors, and in this paper their implementation is confirmed by the results of numerical calculations.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"