All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Investigation of shear-induced platelet activation in arteriovenous fistulas for haemodialysis
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 703-721Numerical modeling of shear-induced platelet activation in haemodialysis arteriovenous fistulas was carried out in this work. The goal was to investigate the mechanisms of threshold shear-induced platelet activation in fistulas. For shear-induced platelet activation to take place, shear stress accumulated by platelets along corresponding trajectories in blood flow had to exceed a definite threshold value. The threshold value of cumulative shear stress was supposed to depend on the multimer size of von Willebrand factor macromolecules acting as hydrodynamic sensors for platelets. The effect of arteriovenous fistulas parameters, such as the anastomotic angle, blood flow rate, and the multimer size of von Willebrand factor macromolecules, on platelet activation risk was studied. Parametric diagrams have been constructed that make it possible to distinguish the areas of parameters corresponding to the presence or absence of shear-induced platelet activation. Scaling relations that approximate critical curves on parametric diagrams were obtained. Analysis showed that threshold fistula flow rate is higher for obtuse anastomotic angle than for sharp ones. This means that a fistula with obtuse angle can be used in wider flow rate range without risk of platelet activation. In addition, a study of different anastomosis configurations of arteriovenous fistulas showed that the configuration “end of vein to end of artery” is among the safest. For all the investigated anastomosis configurations, the critical curves on the parametric diagrams were monotonically decreasing functions of von Willebrand factor multimer size. It was shown that fistula flow rate should have a significant impact on the probability of thrombus formation initiation, while the direction of flow through the distal artery did not affect platelet activation. The obtained results allowed to determine the safest fistula configurations with respect to thrombus formation triggering. The authors believe that the results of the work may be of interest to doctors performing surgical operations for creation of arteriovenous fistulas for haemodialysis. In the final section of the work, possible clinical applications of the obtained results by means of mathematical modeling are discussed.
-
Implicit algorithm for solving equations of motion of incompressible fluid
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 1009-1023A large number of methods have been developed to solve the Navier – Stokes equations in the case of incompressible flows, the most popular of which are methods with velocity correction by the SIMPLE algorithm and its analogue — the method of splitting by physical variables. These methods, developed more than 40 years ago, were used to solve rather simple problems — simulating both stationary flows and non-stationary flows, in which the boundaries of the calculation domain were stationary. At present, the problems of computational fluid dynamics have become significantly more complicated. CFD problems are involving the motion of bodies in the computational domain, the motion of contact boundaries, cavitation and tasks with dynamic local adaptation of the computational mesh. In this case the computational mesh changes resulting in violation of the velocity divergence condition on it. Since divergent velocities are used not only for Navier – Stokes equations, but also for all other equations of the mathematical model of fluid motion — turbulence, mass transfer and energy conservation models, violation of this condition leads to numerical errors and, often, to undivergence of the computational algorithm.
This article presents an implicit method of splitting by physical variables that uses divergent velocities from a given time step to solve the incompressible Navier – Stokes equations. The method is developed to simulate flows in the case of movable and contact boundaries treated in the Euler paradigm. The method allows to perform computations with the integration step exceeding the explicit time step by orders of magnitude (Courant – Friedrichs – Levy number $CFL\gg1$). This article presents a variant of the method for incompressible flows. A variant of the method that allows to calculate the motion of liquid and gas at any Mach numbers will be published shortly. The method for fully compressible flows is implemented in the software package FlowVision.
Numerical simulating classical fluid flow around circular cylinder at low Reynolds numbers ($50 < Re < 140$), when laminar flow is unsteady and the Karman vortex street is formed, are presented in the article. Good agreement of calculations with the experimental data published in the classical works of Van Dyke and Taneda is demonstrated.
-
Development of a hybrid simulation model of the assembly shop
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1359-1379In the presented work, a hybrid optimal simulation model of an assembly shop in the AnyLogic environment has been developed, which allows you to select the parameters of production systems. To build a hybrid model of the investigative approach, discrete-event modeling and aggressive modeling are combined into a single model with an integrating interaction. Within the framework of this work, a mechanism for the development of a production system consisting of several participants-agents is described. An obvious agent corresponds to a class in which a set of agent parameters is specified. In the simulation model, three main groups of operations performed sequentially were taken into account, and the logic for working with rejected sets was determined. The product assembly process is a process that occurs in a multi-phase open-loop system of redundant service with waiting. There are also signs of a closed system — scrap flows for reprocessing. When creating a distribution system in the segment, it is mandatory to use control over the execution of requests in a FIFO queue. For the functional assessment of the production system, the simulation model includes several functional functions that describe the number of finished products, the average time of preparation of products, the number and percentage of rejects, the simulation result for the study, as well as functional variables in which the calculated utilization factors will be used. A series of modeling experiments were carried out in order to study the behavior of the agents of the system in terms of the overall performance indicators of the production system. During the experiment, it was found that the indicator of the average preparation time of the product is greatly influenced by such parameters as: the average speed of the set of products, the average time to complete operations. At a given limitation interval, we managed to select a set of parameters that managed to achieve the largest possible operation of the assembly line. This experiment implements the basic principle of agent-based modeling — decentralized agents make a personal contribution and affect the operation of the entire simulated system as a whole. As a result of the experiments, thanks to the selection of a large set of parameters, it was possible to achieve high performance indicators of the assembly shop, namely: to increase the productivity indicator by 60%; reduce the average assembly time of products by 38%.
-
Pattern formation of a three-species predator – prey model with prey-taxis and omnivorous predator
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1617-1634The spatiotemporal dynamics of a three-component model for food web is considered. The model describes the interactions among resource, prey and predator that consumes both species. In a previous work, the author analyzed the model without taking into account spatial heterogeneity. This study continues the model study of the community considering the diffusion of individuals, as well as directed movements of the predator. It is assumed that the predator responds to the spatial change in the resource and prey density by occupying areas where species density is higher or avoiding them. Directed predator movement is described by the advection term, where velocity is proportional to the gradient of resource and prey density. The system is considered on a one-dimensional domain with zero-flux conditions as boundary ones. The spatiotemporal dynamics produced by model is determined by the system stability in the vicinity of stationary homogeneous state with respect to small inhomogeneous perturbations. The paper analyzes the possibility of wave instability leading to the emergence of autowaves and Turing instability, as a result of which stationary patterns are formed. Sufficient conditions for the existence of both types of instability are obtained. The influence of local kinetic parameters on the spatial structure formation was analyzed. It was shown that only Turing instability is possible when taxis on the resource is positive, but with a negative taxis, both types of instability are possible. The numerical solution of the system was found by using method of lines (MOL) with the numerical integration of ODE system by means of splitting techniques. The spatiotemporal dynamics of the system is presented in several variants, realizing one of the instability types. In the case of a positive taxis on the prey, both autowave and stationary structures are formed in smaller regions, with an increase in the region size, Turing structures are not formed. For negative taxis on the prey, stationary patterns is observed in both regions, while periodic structures appear only in larger areas.
-
Simulation of traffic flows based on the quasi-gasdynamic approach and the cellular automata theory using supercomputers
Computer Research and Modeling, 2024, v. 16, no. 1, pp. 175-194The purpose of the study is to simulate the dynamics of traffic flows on city road networks as well as to systematize the current state of affairs in this area. The introduction states that the development of intelligent transportation systems as an integral part of modern transportation technologies is coming to the fore. The core of these systems contain adequate mathematical models that allow to simulate traffic as close to reality as possible. The necessity of using supercomputers due to the large amount of calculations is also noted, therefore, the creation of special parallel algorithms is needed. The beginning of the article is devoted to the up-to-date classification of traffic flow models and characterization of each class, including their distinctive features and relevant examples with links. Further, the main focus of the article is shifted towards the development of macroscopic and microscopic models, created by the authors, and determination of the place of these models in the aforementioned classification. The macroscopic model is based on the continuum approach and uses the ideology of quasi-gasdynamic systems of equations. Its advantages are indicated in comparison with existing models of this class. The model is presented both in one-dimensional and two-dimensional versions. The both versions feature the ability to study multi-lane traffic. In the two-dimensional version it is made possible by introduction of the concept of “lateral” velocity, i. e., the speed of changing lanes. The latter version allows for carrying out calculations in the computational domain which corresponds to the actual geometry of the road. The section also presents the test results of modeling vehicle dynamics on a road fragment with the local widening and on a road fragment with traffic lights, including several variants of traffic light regimes. In the first case, the calculations allow to draw interesting conclusions about the impact of a road widening on a road capacity as a whole, and in the second case — to select the optimal regime configuration to obtain the “green wave” effect. The microscopic model is based on the cellular automata theory and the single-lane Nagel – Schreckenberg model and is generalized for the multi-lane case by the authors of the article. The model implements various behavioral strategies of drivers. Test computations for the real transport network section in Moscow city center are presented. To achieve an adequate representation of vehicles moving through the network according to road traffic regulations the authors implemented special algorithms adapted for parallel computing. Test calculations were performed on the K-100 supercomputer installed in the Centre of Collective Usage of KIAM RAS.
-
Numerical study of the Holstein model in different thermostats
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 489-502Based on the Holstein Hamiltonian, the dynamics of the charge introduced into the molecular chain of sites was modeled at different temperatures. In the calculation, the temperature of the chain is set by the initial data ¡ª random Gaussian distributions of velocities and site displacements. Various options for the initial charge density distribution are considered. Long-term calculations show that the system moves to fluctuations near a new equilibrium state. For the same initial velocities and displacements, the average kinetic energy, and, accordingly, the temperature of the T chain, varies depending on the initial distribution of the charge density: it decreases when a polaron is introduced into the chain, or increases if at the initial moment the electronic part of the energy is maximum. A comparison is made with the results obtained previously in the model with a Langevin thermostat. In both cases, the existence of a polaron is determined by the thermal energy of the entire chain.
According to the simulation results, the transition from the polaron mode to the delocalized state occurs in the same range of thermal energy values of a chain of $N$ sites ~ $NT$ for both thermostat options, with an additional adjustment: for the Hamiltonian system the temperature does not correspond to the initially set one, but is determined after long-term calculations from the average kinetic energy of the chain.
In the polaron region, the use of different methods for simulating temperature leads to a number of significant differences in the dynamics of the system. In the region of the delocalized state of charge, for high temperatures, the results averaged over a set of trajectories in a system with a random force and the results averaged over time for a Hamiltonian system are close, which does not contradict the ergodic hypothesis. From a practical point of view, for large temperatures T ≈ 300 K, when simulating charge transfer in homogeneous chains, any of these options for setting the thermostat can be used.
-
Valuation of machines at the random process of their degradation and premature sales
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 797-815The model of the process of using machinery and equipment is considered, which takes into account the probabilistic nature of the process of their operation and sale. It takes into account the possibility of random hidden failures, after which the condition of the machine deteriorates abruptly, as well as the randomly arising need for premature (before the end of its service life) sale of the machine, which requires, generally speaking, random time. The model is focused on assessing the market value and service life of machines in accordance with International Valuation Standards. Strictly speaking, the market value of a used machine depends on its technical condition, but in practice, appraisers only take into account its age, since generally accepted measures of the technical condition of machines do not yet exist. As a result, the market value of a used machine is assumed to be equal to the average market value of similar machines of the corresponding age. For these purposes, appraisers use coefficients that reflect the influence of the age of machines on their market value. Such coefficients are not always justified and do not take into account either the degradation of the machine or the probabilistic nature of the process of its use. The proposed model is based on the anticipation of benefits principle. In it, we characterize the state of the machine by the intensity of the benefits it brings. The machine is subjected to a complex Poisson failure process, and after failure its condition abruptly worsens and may even reach its limit. Situations also arise that preclude further use of the machine by its owner. In such situations, the owner puts the machine up for sale before the end of its service life (prematurely), and the sale requires a random timing. The model allows us to take into account the influence of such situations and construct an analytical relationship linking the market value of a machine with its condition, and calculate the average coefficients of change in the market value of machines with age. At the same time, it is also possible to take into account the influence of inflation and the scrap cost of the machine. We have found that the rate of prematurely sales has a significant impact on the cost of new and used machines. The model also allows us to take into account the influence of inflation and the scrap value of the machine. We have found that the rate of premature sales has a significant impact on the service life and market value of new and used machines. At the same time, the dependence of the market value of machines on age is largely determined by the coefficient of variation of the service life of the machines. The results obtained allow us to obtain more reasonable estimates of the market value of machines, including for the purposes of the system of national accounts.
-
Changepoint detection in biometric data: retrospective nonparametric segmentation methods based on dynamic programming and sliding windows
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1295-1321This paper is dedicated to the analysis of medical and biological data obtained through locomotor training and testing of astronauts conducted both on Earth and during spaceflight. These experiments can be described as the astronaut’s movement on a treadmill according to a predefined regimen in various speed modes. During these modes, not only the speed is recorded but also a range of parameters, including heart rate, ground reaction force, and others, are collected. In order to analyze the dynamics of the astronaut’s condition over an extended period, it is necessary to perform a qualitative segmentation of their movement modes to independently assess the target metrics. This task becomes particularly relevant in the development of an autonomous life support system for astronauts that operates without direct supervision from Earth. The segmentation of target data is complicated by the presence of various anomalies, such as deviations from the predefined regimen, arbitrary and varying duration of mode transitions, hardware failures, and other factors. The paper includes a detailed review of several contemporary retrospective (offline) nonparametric methods for detecting multiple changepoints, which refer to sudden changes in the properties of the observed time series occurring at unknown moments. Special attention is given to algorithms and statistical measures that determine the homogeneity of the data and methods for detecting change points. The paper considers approaches based on dynamic programming and sliding window methods. The second part of the paper focuses on the numerical modeling of these methods using characteristic examples of experimental data, including both “simple” and “complex” speed profiles of movement. The analysis conducted allowed us to identify the preferred methods, which will be further evaluated on the complete dataset. Preference is given to methods that ensure the closeness of the markup to a reference one, potentially allow the detection of both boundaries of transient processes, as well as are robust relative to internal parameters.
-
Platelet transport and adhesion in shear blood flow: the role of erythrocytes
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 185-200Views (last year): 3. Citations: 8 (RSCI).Hemostatic system serves the organism for urgent repairs of damaged blood vessel walls. Its main components – platelets, the smallest blood cells, – are constantly contained in blood and quickly adhere to the site of injury. Platelet migration across blood flow and their hit with the wall are governed by blood flow conditions and, in particular, by the physical presence of other blood cells – erythrocytes. In this review we consider the main regularities of this influence, available mathematical models of platelet migration across blood flow and adhesion based on "convection-diffusion" PDEs, and discuss recent advances in this field. Understanding of the mechanisms of these processes is necessary for building of adequate mathematical models of hemostatic system functioning in blood flow in normal and pathological conditions.
-
Predictive models of efficacy and public health impact of vaccination with rotavirus vaccine in Ukraine
Computer Research and Modeling, 2012, v. 4, no. 2, pp. 407-421Views (last year): 2.There were presented the results of the computational and theoretical studies related to assessing of an efficacy and public health impact of a vaccination with a rotavirus vaccine in Ukraine. The required indicators are: the genotype-specific vaccine efficacy, number of the severe illness preventions, hospitalizations, outpatient visits and deaths. The results were obtained in a form of tree of decisions based on Makrov model by using mathematical model with computer simulation. The results showed the significant positive effect of the vaccination compared to no vaccination, in case of high level of vaccine coverage in Ukraine.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"