All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
The optimization approach to simulation modeling of microstructures
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 597-606Views (last year): 4. Citations: 7 (RSCI).The paper presents an optimization approach to microstructure simulation. Porosity function was optimized by numerical method, grain-size model was optimized by complex method based on criteria of model quality. Methods have been validated on examples. Presented new regression model of model quality. Actual application of proposed method is 3D reconstruction of core sample microstructure. Presented results suggest to prolongation of investigations.
-
Monte Carlo simulation of nonequilibrium critical behavior of 3D Ising model
Computer Research and Modeling, 2014, v. 6, no. 1, pp. 119-129Views (last year): 11.Investigation of influence of non-equilibrium initial states and structural disorder on characteristics of anomalous slow non-equilibrium critical behavior of three-dimensional Ising model is carried out. The unique ageing properties and violations of the equilibrium fluctuation-dissipation theorem are observed for considered pure and disordered systems which were prepared in high-temperature initial state and then quenched in their critical points. The heat-bath algorithm description of ageing properties in non-equilibrium critical behavior of three-dimensional Ising model with spin concentrations p = 1.0, p = 0.8, and 0.6 is realized. On the base of analysis of such two-time quantities as autocorrelation function and dynamical susceptibility were demonstrated the ageing effects and were calculated asymptotic values of universal fluctuation-dissipation ratio in these systems. It was shown that the presence of defects leads to aging gain.
-
Modelling diameter measurement errors of a wide-aperture laser beam with flat profile
Computer Research and Modeling, 2015, v. 7, no. 1, pp. 113-124Views (last year): 3. Citations: 3 (RSCI).Work is devoted to modeling instrumental errors of a laser beam diameter measurement using a method based on a lambertian transmissive screen. Super-Lorenz distribution was used as a model of the beam. To determine the effect of each parameter on the measurement error were performed computational experiments, results of which were approximated by analytic functions. There were obtained the errors depending on relative beam size, spatial non-uniformity of the transmission screen, lens distortion, physical vignetting, beam tilt, CCD spatial resolution, ADC resolution of a camera. There was shown that the error can be less then 1 %.
-
Choice of design of transcatheter aortic valve prosthesis frame based on finite element analysis
Computer Research and Modeling, 2015, v. 7, no. 4, pp. 909-922Views (last year): 3. Citations: 1 (RSCI).This article presents an analysis of the impact of the transcatheter prosthesis frame design features on the results of its implantation in the aortic root model. In this paper we analyzed the various approaches to the design of such structures, as well as modifications in order to improve their functional characteristics during the implantation. As a general method for obtaining the results of interaction of the objects was used finite element method with nonlinear materials description and analysis of the main parameters: the stress-strain state, radial and friction forces.
-
Investigation of individual-based mechanisms of single-species population dynamics by logical deterministic cellular automata
Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1279-1293Views (last year): 16. Citations: 3 (RSCI).Investigation of logical deterministic cellular automata models of population dynamics allows to reveal detailed individual-based mechanisms. The search for such mechanisms is important in connection with ecological problems caused by overexploitation of natural resources, environmental pollution and climate change. Classical models of population dynamics have the phenomenological nature, as they are “black boxes”. Phenomenological models fundamentally complicate research of detailed mechanisms of ecosystem functioning. We have investigated the role of fecundity and duration of resources regeneration in mechanisms of population growth using four models of ecosystem with one species. These models are logical deterministic cellular automata and are based on physical axiomatics of excitable medium with regeneration. We have modeled catastrophic death of population arising from increasing of resources regeneration duration. It has been shown that greater fecundity accelerates population extinction. The investigated mechanisms are important for understanding mechanisms of sustainability of ecosystems and biodiversity conservation. Prospects of the presented modeling approach as a method of transparent multilevel modeling of complex systems are discussed.
-
Consideration of psychological factors in models of the battle (conflict)
Computer Research and Modeling, 2016, v. 8, no. 6, pp. 951-964Views (last year): 7. Citations: 4 (RSCI).The course and outcome of the battle is largely dependent on the morale of the troops, characterized by the percentage of loss in killed and wounded, in which the troops still continue to fight. Every fight is a psychological act of ending his rejection of one of the parties. Typically, models of battle psychological factor taken into account in the decision of Lanchester equations (the condition of equality of forces, when the number of one of the parties becomes zero). It is emphasized that the model Lanchester type satisfactorily describe the dynamics of the battle only in the initial stages. To resolve this contradiction is proposed to use a modification of Lanchester's equations, taking into account the fact that at any moment of the battle on the enemy firing not affected and did not abandon the battle fighters. The obtained differential equations are solved by numerical method and allow the dynamics to take into account the influence of psychological factor and evaluate the completion time of the conflict. Computational experiments confirm the known military theory is the fact that the fight usually ends in refusal of soldiers of one of the parties from its continuation (avoidance of combat in various forms). Along with models of temporal and spatial dynamics proposed to use a modification of the technology features of the conflict of S. Skaperdas, based on the principles of combat. To estimate the probability of victory of one side in the battle takes into account the interest of the maturing sides of the bloody casualties and increased military superiority.
-
On some properties of short-wave statistics of FOREX time series
Computer Research and Modeling, 2017, v. 9, no. 4, pp. 657-669Views (last year): 10.Financial mathematics is one of the most natural applications for the statistical analysis of time series. Financial time series reflect simultaneous activity of a large number of different economic agents. Consequently, one expects that methods of statistical physics and the theory of random processes can be applied to them.
In this paper, we provide a statistical analysis of time series of the FOREX currency market. Of particular interest is the comparison of the time series behavior depending on the way time is measured: physical time versus trading time measured in the number of elementary price changes (ticks). The experimentally observed statistics of the time series under consideration (euro–dollar for the first half of 2007 and for 2009 and British pound – dollar for 2007) radically differs depending on the choice of the method of time measurement. When measuring time in ticks, the distribution of price increments can be well described by the normal distribution already on a scale of the order of ten ticks. At the same time, when price increments are measured in real physical time, the distribution of increments continues to differ radically from the normal up to scales of the order of minutes and even hours.
To explain this phenomenon, we investigate the statistical properties of elementary increments in price and time. In particular, we show that the distribution of time between ticks for all three time series has a long (1-2 orders of magnitude) power-law tails with exponential cutoff at large times. We obtained approximate expressions for the distributions of waiting times for all three cases. Other statistical characteristics of the time series (the distribution of elementary price changes, pair correlation functions for price increments and for waiting times) demonstrate fairly simple behavior. Thus, it is the anomalously wide distribution of the waiting times that plays the most important role in the deviation of the distribution of increments from the normal. As a result, we discuss the possibility of applying a continuous time random walk (CTRW) model to describe the FOREX time series.
-
Interaction of a breather with a domain wall in a two-dimensional O(3) nonlinear sigma model
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 773-787Views (last year): 6.By numerical simulation methods the interaction processes of oscillating soliton (breather) with a 180-degree Neel domain wall in the framework of a (2 + 1)-dimensional supersymmetric O(3) nonlinear sigma model is studied. The purpose of this paper is to investigate nonlinear evolution and stability of a system of interacting localized dynamic and topological solutions. To construct the interaction models, were used a stationary breather and domain wall solutions, where obtained in the framework of the two-dimensional sine-Gordon equation by adding specially selected perturbations to the A3-field vector in the isotopic space of the Bloch sphere. In the absence of an external magnetic field, nonlinear sigma models have formal Lorentz invariance, which allows constructing, in particular, moving solutions and analyses the experimental data of the nonlinear dynamics of an interacting solitons system. In this paper, based on the obtained moving localized solutions, models for incident and head-on collisions of breathers with a domain wall are constructed, where, depending on the dynamic parameters of the system, are observed the collisions and reflections of solitons from each other, a long-range interactions and also the decay of an oscillating soliton into linear perturbation waves. In contrast to the breather solution that has the dynamics of the internal degree of freedom, the energy integral of a topologically stable soliton in the all experiments the preserved with high accuracy. For each type of interaction, the range of values of the velocity of the colliding dynamic and topological solitons is determined as a function of the rotation frequency of the A3-field vector in the isotopic space. Numerical models are constructed on the basis of methods of the theory of finite difference schemes, using the properties of stereographic projection, taking into account the group-theoretical features of constructions of the O(N) class of nonlinear sigma models of field theory. On the perimeter of the two-dimensional modeling area, specially developed boundary conditions are established that absorb linear perturbation waves radiated by interacting soliton fields. Thus, the simulation of the interaction processes of localized solutions in an infinite two-dimensional phase space is carried out. A software module has been developed that allows to carry out a complex analysis of the evolution of interacting solutions of nonlinear sigma models of field theory, taking into account it’s group properties in a two-dimensional pseudo-Euclidean space. The analysis of isospin dynamics, as well the energy density and energy integral of a system of interacting dynamic and topological solitons is carried out.
-
Some relationships between thermodynamic characteristics and water vapor and carbon dioxide fluxes in a recently clear-cut area
Computer Research and Modeling, 2017, v. 9, no. 6, pp. 965-980Views (last year): 15. Citations: 1 (RSCI).The temporal variability of exergy of short-wave and long-wave radiation and its relationships with sensible heat, water vapor (H2O) and carbon dioxide (CO2) fluxes on a recently clear-cut area in a mixed coniferous and small-leaved forest in the Tver region is discussed. On the basis of the analysis of radiation and exergy efficiency coefficients suggested by Yu.M. Svirezhev it was shown that during the first eight months after clearcutting the forest ecosystem functions as a "heat engine" i.e. the processes of energy dissipation dominated over processes of biomass production. To validate the findings the statistical analysis of temporary variability of meteorological parameters, as well as, daily fluxes of sensible heat, H2O and CO2 was provided using the trigonometrical polynomials. The statistical models that are linearly depended on an exergy of short-wave and long-wave radiation were obtained for mean daily values of CO2 fluxes, gross primary production of regenerated vegetation and sensible heat fluxes. The analysis of these dependences is also confirmed the results obtained from processing the radiation and exergy efficiency coefficients. The splitting the time series into separate time intervals, e.g. “spring–summer” and “summer–autumn”, allowed revealing that the statistically significant relationships between atmospheric fluxes and exergy were amplified in summer months as the clear-cut area was overgrown by grassy and young woody vegetation. The analysis of linear relationships between time-series of latent heat fluxes and exergy showed their statistical insignificance. The linear relationships between latent heat fluxes and temperature were in turn statistically significant. The air temperature was a key factor improving the accuracy of the models, whereas effect of exergy was insignificant. The results indicated that at the time of active vegetation regeneration within the clear-cut area the seasonal variability of surface evaporation is mainly governed by temperature variation.
-
Survival task for the mathematical model of glioma therapy with blood-brain barrier
Computer Research and Modeling, 2018, v. 10, no. 1, pp. 113-123Views (last year): 14.The paper proposes a mathematical model for the therapy of glioma, taking into account the blood-brain barrier, radiotherapy and antibody therapy. The parameters were estimated from experimental data and the evaluation of the effect of parameter values on the effectiveness of treatment and the prognosis of the disease were obtained. The possible variants of sequential use of radiotherapy and the effect of antibodies have been explored. The combined use of radiotherapy with intravenous administration of $mab$ $Cx43$ leads to a potentiation of the therapeutic effect in glioma.
Radiotherapy must precede chemotherapy, as radio exposure reduces the barrier function of endothelial cells. Endothelial cells of the brain vessels fit tightly to each other. Between their walls are formed so-called tight contacts, whose role in the provision of BBB is that they prevent the penetration into the brain tissue of various undesirable substances from the bloodstream. Dense contacts between endothelial cells block the intercellular passive transport.
The mathematical model consists of a continuous part and a discrete one. Experimental data on the volume of glioma show the following interesting dynamics: after cessation of radio exposure, tumor growth does not resume immediately, but there is some time interval during which glioma does not grow. Glioma cells are divided into two groups. The first group is living cells that divide as fast as possible. The second group is cells affected by radiation. As a measure of the health of the blood-brain barrier system, the ratios of the number of BBB cells at the current moment to the number of cells at rest, that is, on average healthy state, are chosen.
The continuous part of the model includes a description of the division of both types of glioma cells, the recovery of BBB cells, and the dynamics of the drug. Reducing the number of well-functioning BBB cells facilitates the penetration of the drug to brain cells, that is, enhances the action of the drug. At the same time, the rate of division of glioma cells does not increase, since it is limited not by the deficiency of nutrients available to cells, but by the internal mechanisms of the cell. The discrete part of the mathematical model includes the operator of radio interaction, which is applied to the indicator of BBB and to glial cells.
Within the framework of the mathematical model of treatment of a cancer tumor (glioma), the problem of optimal control with phase constraints is solved. The patient’s condition is described by two variables: the volume of the tumor and the condition of the BBB. The phase constraints delineate a certain area in the space of these indicators, which we call the survival area. Our task is to find such treatment strategies that minimize the time of treatment, maximize the patient’s rest time, and at the same time allow state indicators not to exceed the permitted limits. Since the task of survival is to maximize the patient’s lifespan, it is precisely such treatment strategies that return the indicators to their original position (and we see periodic trajectories on the graphs). Periodic trajectories indicate that the deadly disease is translated into a chronic one.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"