Результаты поиска по 'modeling':
Найдено статей: 781
  1. Chetyrbotskii V.A., Chetyrbotsky A.N.
    Problems of numerical simulation in the dynamics system “soil–plant”
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 445-465

    Modern mathematical models in the dynamics system “soil–plant” are considered. The components of this system are: agricultural plant, microorganisms of the rhizosphere (root zone of plants), the mineral nutrition elements of plants in their mobile and immobile forms. The model of submitted system based on the analysis of the adopted provisions was developed. The construction of system elements allows to display the coordinated dynamics of these elements among themselves. In particular, the dynamics of mineral nutrition elements in plants and the dynamics of their biomass are determined by the current contents in the rhizosphere of mineral fertilizers and organic origin substances (plant roots, leaves, etc.). The immobility of plants spatial distribution and the mobile spatial nature of microorganisms are assumed. This mechanism is determined by diffusion. Mutual relationships between weeds and pests are suggested. The dynamics of the mineral nutrition elements is determined by the peculiarity of sorption in the soil solution, environmental conditions, organic decomposition and fertilizer application. An analytical study for a system where each of the components is represented by only one species (fertilizer, the association of microorganisms and plants) was performed. An adaptation of the wave propagation model in the “resource–consumer” system (Kolmogorov–Petrovsky–Piskunov waves) has been developed for annual agricultural crops. The developed model has been adapted for the growth of Krasnoufimskaya-100 spring wheat in a vessel on peat lowland soil, where nitrogen, phosphorus, and potassium fertilizers were added variably. Sample distributions are plants biomass and the content of mineral nutrition elements in them. The parametric identification of the model and its adequacy was performed. An assessment of the model adequacy showed a good agreement between the model and experimental data.

  2. Matveev A.V.
    Modeling the kinetics of radiopharmaceuticals with iodine isotopes in nuclear medicine problems
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 883-905

    Radiopharmaceuticals with iodine radioisotopes are now widely used in imaging and non-imaging methods of nuclear medicine. When evaluating the results of radionuclide studies of the structural and functional state of organs and tissues, parallel modeling of the kinetics of radiopharmaceuticals in the body plays an important role. The complexity of such modeling lies in two opposite aspects. On the one hand, excessive simplification of the anatomical and physiological characteristics of the organism when splitting it to the compartments that may result in the loss or distortion of important clinical diagnosis information, on the other – excessive, taking into account all possible interdependencies of the functioning of the organs and systems that, on the contrary, will lead to excess amount of absolutely useless for clinical interpretation of the data or the mathematical model becomes even more intractable. Our work develops a unified approach to the construction of mathematical models of the kinetics of radiopharmaceuticals with iodine isotopes in the human body during diagnostic and therapeutic procedures of nuclear medicine. Based on this approach, three- and four-compartment pharmacokinetic models were developed and corresponding calculation programs were created in the C++ programming language for processing and evaluating the results of radionuclide diagnostics and therapy. Various methods for identifying model parameters based on quantitative data from radionuclide studies of the functional state of vital organs are proposed. The results of pharmacokinetic modeling for radionuclide diagnostics of the liver, kidney, and thyroid using iodine-containing radiopharmaceuticals are presented and analyzed. Using clinical and diagnostic data, individual pharmacokinetic parameters of transport of different radiopharmaceuticals in the body (transport constants, half-life periods, maximum activity in the organ and the time of its achievement) were determined. It is shown that the pharmacokinetic characteristics for each patient are strictly individual and cannot be described by averaged kinetic parameters. Within the framework of three pharmacokinetic models, “Activity–time” relationships were obtained and analyzed for different organs and tissues, including for tissues in which the activity of a radiopharmaceutical is impossible or difficult to measure by clinical methods. Also discussed are the features and the results of simulation and dosimetric planning of radioiodine therapy of the thyroid gland. It is shown that the values of absorbed radiation doses are very sensitive to the kinetic parameters of the compartment model. Therefore, special attention should be paid to obtaining accurate quantitative data from ultrasound and thyroid radiometry and identifying simulation parameters based on them. The work is based on the principles and methods of pharmacokinetics. For the numerical solution of systems of differential equations of the pharmacokinetic models we used Runge–Kutta methods and Rosenbrock method. The Hooke–Jeeves method was used to find the minimum of a function of several variables when identifying modeling parameters.

  3. Rusyak I.G., Tenenev V.A.
    Modeling of ballistics of an artillery shot taking into account the spatial distribution of parameters and backpressure
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1123-1147

    The paper provides a comparative analysis of the results obtained by various approaches to modeling the process of artillery shot. In this connection, the main problem of internal ballistics and its particular case of the Lagrange problem are formulated in averaged parameters, where, within the framework of the assumptions of the thermodynamic approach, the distribution of pressure and gas velocity over the projectile space for a channel of variable cross section is taken into account for the first time. The statement of the Lagrange problem is also presented in the framework of the gas-dynamic approach, taking into account the spatial (one-dimensional and two-dimensional axisymmetric) changes in the characteristics of the ballistic process. The control volume method is used to numerically solve the system of Euler gas-dynamic equations. Gas parameters at the boundaries of control volumes are determined using a selfsimilar solution to the Riemann problem. Based on the Godunov method, a modification of the Osher scheme is proposed, which allows to implement a numerical calculation algorithm with a second order of accuracy in coordinate and time. The solutions obtained in the framework of the thermodynamic and gas-dynamic approaches are compared for various loading parameters. The effect of projectile mass and chamber broadening on the distribution of the ballistic parameters of the shot and the dynamics of the projectile motion was studied. It is shown that the thermodynamic approach, in comparison with the gas-dynamic approach, leads to a systematic overestimation of the estimated muzzle velocity of the projectile in the entire range of parameters studied, while the difference in muzzle velocity can reach 35%. At the same time, the discrepancy between the results obtained in the framework of one-dimensional and two-dimensional gas-dynamic models of the shot in the same range of change in parameters is not more than 1.3%.

    A spatial gas-dynamic formulation of the backpressure problem is given, which describes the change in pressure in front of an accelerating projectile as it moves along the barrel channel. It is shown that accounting the projectile’s front, considered in the two-dimensional axisymmetric formulation of the problem, leads to a significant difference in the pressure fields behind the front of the shock wave, compared with the solution in the framework of the onedimensional formulation of the problem, where the projectile’s front is not possible to account. It is concluded that this can significantly affect the results of modeling ballistics of a shot at high shooting velocities.

  4. Shmidt Y.D., Ivashina N.V., Ozerova G.P.
    Modelling interregional migration flows by the cellular automata
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1467-1483

    The article dwells upon investigating the issue of the most adequate tools developing and justifying to forecast the interregional migration flows value and structure. Migration processes have a significant impact on the size and demographic structure of the population of territories, the state and balance of regional and local labor markets.

    To analyze the migration processes and to assess their impact an economic-mathematical tool is required which would be instrumental in modelling the migration processes and flows for different areas with the desired precision. The current methods and approaches to the migration processes modelling, including the analysis of their advantages and disadvantages, were considered. It is noted that to implement many of these methods mass aggregated statistical data is required which is not always available and doesn’t characterize the migrants behavior at the local level where the decision to move to a new dwelling place is made. This has a significant impact on the ability to apply appropriate migration processes modelling techniques and on the projection accuracy of the migration flows magnitude and structure.

    The cellular automata model for interregional migration flows modelling, implementing the integration of the households migration behavior model under the conditions of the Bounded Rationality into the general model of the area migration flow was developed and tested based on the Primorye Territory data. To implement the households migration behavior model under the conditions of the Bounded Rationality the integral attractiveness index of the regions with economic, social and ecological components was proposed in the work.

    To evaluate the prognostic capacity of the developed model, it was compared with the available cellular automata models used to predict interregional migration flows. The out of sample prediction method which showed statistically significant superiority of the proposed model was applied for this purpose. The model allows obtaining the forecasts and quantitative characteristics of the areas migration flows based on the households real migration behaviour at the local level taking into consideration their living conditions and behavioural motives.

  5. Varshavsky L.E.
    Mathematical methods for stabilizing the structure of social systems under external disturbances
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 845-857

    The article considers a bilinear model of the influence of external disturbances on the stability of the structure of social systems. Approaches to the third-party stabilization of the initial system consisting of two groups are investigated — by reducing the initial system to a linear system with uncertain parameters and using the results of the theory of linear dynamic games with a quadratic criterion. The influence of the coefficients of the proposed model of the social system and the control parameters on the quality of the system stabilization is analyzed with the help of computer experiments. It is shown that the use of a minimax strategy by a third party in the form of feedback control leads to a relatively close convergence of the population of the second group (excited by external influences) to an acceptable level, even with unfavorable periodic dynamic perturbations.

    The influence of one of the key coefficients in the criterion $(\varepsilon)$ used to compensate for the effects of external disturbances (the latter are present in the linear model in the form of uncertainty) on the quality of system stabilization is investigated. Using Z-transform, it is shown that a decrease in the coefficient $\varepsilon$ should lead to an increase in the values of the sum of the squares of the control. The computer calculations carried out in the article also show that the improvement of the convergence of the system structure to the equilibrium level with a decrease in this coefficient is achieved due to sharp changes in control in the initial period, which may induce the transition of some members of the quiet group to the second, excited group.

    The article also examines the influence of the values of the model coefficients that characterize the level of social tension on the quality of management. Calculations show that an increase in the level of social tension (all other things being equal) leads to the need for a significant increase in the third party's stabilizing efforts, as well as the value of control at the transition period.

    The results of the statistical modeling carried out in the article show that the calculated feedback controls successfully compensate for random disturbances on the social system (both in the form of «white» noise, and of autocorrelated disturbances).

  6. Aronov I.Z., Maksimova O.V.
    Modeling consensus building in conditions of dominance in a social group
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1067-1078

    In many social groups, for example, in technical committees for standardization, at the international, regional and national levels, in European communities, managers of ecovillages, social movements (occupy), international organizations, decision-making is based on the consensus of the group members. Instead of voting, where the majority wins over the minority, consensus allows for a solution that each member of the group supports, or at least considers acceptable. This approach ensures that all group members’ opinions, ideas and needs are taken into account. At the same time, it is noted that reaching consensus takes a long time, since it is necessary to ensure agreement within the group, regardless of its size. It was shown that in some situations the number of iterations (agreements, negotiations) is very significant. Moreover, in the decision-making process, there is always a risk of blocking the decision by the minority in the group, which not only delays the decisionmaking time, but makes it impossible. Typically, such a minority is one or two odious people in the group. At the same time, such a member of the group tries to dominate in the discussion, always remaining in his opinion, ignoring the position of other colleagues. This leads to a delay in the decision-making process, on the one hand, and a deterioration in the quality of consensus, on the other, since only the opinion of the dominant member of the group has to be taken into account. To overcome the crisis in this situation, it was proposed to make a decision on the principle of «consensus minus one» or «consensus minus two», that is, do not take into account the opinion of one or two odious members of the group.

    The article, based on modeling consensus using the model of regular Markov chains, examines the question of how much the decision-making time according to the «consensus minus one» rule is reduced, when the position of the dominant member of the group is not taken into account.

    The general conclusion that follows from the simulation results is that the rule of thumb for making decisions on the principle of «consensus minus one» has a corresponding mathematical justification. The simulation results showed that the application of the «consensus minus one» rule can reduce the time to reach consensus in the group by 76–95%, which is important for practice.

    The average number of agreements hyperbolically depends on the average authoritarianism of the group members (excluding the authoritarian one), which means the possibility of delaying the agreement process at high values of the authoritarianism of the group members.

  7. Krasnov F.V., Smaznevich I.S., Baskakova E.N.
    Bibliographic link prediction using contrast resampling technique
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1317-1336

    The paper studies the problem of searching for fragments with missing bibliographic links in a scientific article using automatic binary classification. To train the model, we propose a new contrast resampling technique, the innovation of which is the consideration of the context of the link, taking into account the boundaries of the fragment, which mostly affects the probability of presence of a bibliographic links in it. The training set was formed of automatically labeled samples that are fragments of three sentences with class labels «without link» and «with link» that satisfy the requirement of contrast: samples of different classes are distanced in the source text. The feature space was built automatically based on the term occurrence statistics and was expanded by constructing additional features — entities (names, numbers, quotes and abbreviations) recognized in the text.

    A series of experiments was carried out on the archives of the scientific journals «Law enforcement review» (273 articles) and «Journal Infectology» (684 articles). The classification was carried out by the models Nearest Neighbors, RBF SVM, Random Forest, Multilayer Perceptron, with the selection of optimal hyperparameters for each classifier.

    Experiments have confirmed the hypothesis put forward. The highest accuracy was reached by the neural network classifier (95%), which is however not as fast as the linear one that showed also high accuracy with contrast resampling (91–94%). These values are superior to those reported for NER and Sentiment Analysis on comparable data. The high computational efficiency of the proposed method makes it possible to integrate it into applied systems and to process documents online.

  8. Nikitin I.S., Nikitin A.D.
    Multi regime model and numerical algorithm for calculations on various types quasi crack developing under cyclic loading
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 873-885

    A new method for calculating the initiation and development of narrow local damage zones in specimens and structural elements subjected to various modes cyclic loadings is proposed based on multi regime two criteria model of fatigue fracture. Such narrow zones of damage can be considered as quasi-cracks of two different types, corresponding to the mechanism of normal crack opening and shear.

    Numerical simulations that are aimed to reproduce the left and right branches of the full fatigue curves for specimens made from titanium and aluminum alloy and to verify the model. These branches were constructed based on tests results obtained under various modes and cyclic loading schemes. Examples of modeling the development of quasi-cracks for two types (normal opening and shear) under different cyclic loading modes for a plate with a hole as a stress concentrator are given. Under a complex stress state in the proposed multi regime model, a natural implementation of any considered mechanisms for the quasi-cracks development is possible. Quasi-cracks of different types can develop in different parts of the specimen, including simultaneously.

  9. Ignatev N.A., Tuliev U.Y.
    Semantic structuring of text documents based on patterns of natural language entities
    Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1185-1197

    The technology of creating patterns from natural language words (concepts) based on text data in the bag of words model is considered. Patterns are used to reduce the dimension of the original space in the description of documents and search for semantically related words by topic. The process of dimensionality reduction is implemented through the formation of patterns of latent features. The variety of structures of document relations is investigated in order to divide them into themes in the latent space.

    It is considered that a given set of documents (objects) is divided into two non-overlapping classes, for the analysis of which it is necessary to use a common dictionary. The belonging of words to a common vocabulary is initially unknown. Class objects are considered as opposition to each other. Quantitative parameters of oppositionality are determined through the values of the stability of each feature and generalized assessments of objects according to non-overlapping sets of features.

    To calculate the stability, the feature values are divided into non-intersecting intervals, the optimal boundaries of which are determined by a special criterion. The maximum stability is achieved under the condition that the boundaries of each interval contain values of one of the two classes.

    The composition of features in sets (patterns of words) is formed from a sequence ordered by stability values. The process of formation of patterns and latent features based on them is implemented according to the rules of hierarchical agglomerative grouping.

    A set of latent features is used for cluster analysis of documents using metric grouping algorithms. The analysis applies the coefficient of content authenticity based on the data on the belonging of documents to classes. The coefficient is a numerical characteristic of the dominance of class representatives in groups.

    To divide documents into topics, it is proposed to use the union of groups in relation to their centers. As patterns for each topic, a sequence of words ordered by frequency of occurrence from a common dictionary is considered.

    The results of a computational experiment on collections of abstracts of scientific dissertations are presented. Sequences of words from the general dictionary on 4 topics are formed.

  10. Makarov I.S., Bagantsova E.R., Iashin P.A., Kovaleva M.D., Gorbachev R.A.
    Development of and research on machine learning algorithms for solving the classification problem in Twitter publications
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 185-195

    Posts on social networks can both predict the movement of the financial market, and in some cases even determine its direction. The analysis of posts on Twitter contributes to the prediction of cryptocurrency prices. The specificity of the community is represented in a special vocabulary. Thus, slang expressions and abbreviations are used in posts, the presence of which makes it difficult to vectorize text data, as a result of which preprocessing methods such as Stanza lemmatization and the use of regular expressions are considered. This paper describes created simplest machine learning models, which may work despite such problems as lack of data and short prediction timeframe. A word is considered as an element of a binary vector of a data unit in the course of the problem of binary classification solving. Basic words are determined according to the frequency analysis of mentions of a word. The markup is based on Binance candlesticks with variable parameters for a more accurate description of the trend of price changes. The paper introduces metrics that reflect the distribution of words depending on their belonging to a positive or negative classes. To solve the classification problem, we used a dense model with parameters selected by Keras Tuner, logistic regression, a random forest classifier, a naive Bayesian classifier capable of working with a small sample, which is very important for our task, and the k-nearest neighbors method. The constructed models were compared based on the accuracy metric of the predicted labels. During the investigation we recognized that the best approach is to use models which predict price movements of a single coin. Our model deals with posts that mention LUNA project, which no longer exist. This approach to solving binary classification of text data is widely used to predict the price of an asset, the trend of its movement, which is often used in automated trading.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"