All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Scientific and pedagogical schools founded by A. S. Kholodov
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 561-579Views (last year): 42.In the science development an important role the scientific schools are played. This schools are the associations of researchers connected by the common problem, the ideas and the methods used for problems solution. Usually Scientific schools are formed around the leader and the uniting idea.
The several sciences schools were created around academician A. S. Kholodov during his scientific and pedagogical activity.
This review tries to present the main scientific directions in which the bright science collectives with the common frames of reference and approaches to researches were created. In the review this common base is marked out. First, this is development of the group of numerical methods for hyperbolic type systems of partial derivatives differential equations solution — grid and characteristic methods. Secondly, the description of different numerical methods in the undetermined coefficients spaces. This approach developed for all types of partial equations and for ordinary differential equations.
On the basis of A. S. Kholodov’s numerical approaches the research teams working in different subject domains are formed. The fields of interests are including mathematical modeling of the plasma dynamics, deformable solid body dynamics, some problems of biology, biophysics, medical physics and biomechanics. The new field of interest includes solving problem on graphs (such as processes of the electric power transportation, modeling of the traffic flows on a road network etc).
There is the attempt in the present review analyzed the activity of scientific schools from the moment of their origin so far, to trace the connection of A. S. Kholodov’s works with his colleagues and followers works. The complete overview of all the scientific schools created around A. S. Kholodov is impossible due to the huge amount and a variety of the scientific results.
The attempt to connect scientific schools activity with the advent of scientific and educational school in Moscow Institute of Physics and Technology also becomes.
-
Neural network model of human intoxication functional state determining in some problems of transport safety solution
Computer Research and Modeling, 2018, v. 10, no. 3, pp. 285-293Views (last year): 42. Citations: 2 (RSCI).This article solves the problem of vehicles drivers intoxication functional statedetermining. Its solution is relevant in the transport security field during pre-trip medical examination. The problem solution is based on the papillomometry method application, which allows to evaluate the driver state by his pupillary reaction to illumination change. The problem is to determine the state of driver inebriation by the analysis of the papillogram parameters values — a time series characterizing the change in pupil dimensions upon exposure to a short-time light pulse. For the papillograms analysis it is proposed to use a neural network. A neural network model for determining the drivers intoxication functional state is developed. For its training, specially prepared data samples are used which are the values of the following parameters of pupillary reactions grouped into two classes of functional states of drivers: initial diameter, minimum diameter, half-constriction diameter, final diameter, narrowing amplitude, rate of constriction, expansion rate, latent reaction time, the contraction time, the expansion time, the half-contraction time, and the half-expansion time. An example of the initial data is given. Based on their analysis, a neural network model is constructed in the form of a single-layer perceptron consisting of twelve input neurons, twenty-five neurons of the hidden layer, and one output neuron. To increase the model adequacy using the method of ROC analysis, the optimal cut-off point for the classes of solutions at the output of the neural network is determined. A scheme for determining the drivers intoxication state is proposed, which includes the following steps: pupillary reaction video registration, papillogram construction, parameters values calculation, data analysis on the base of the neural network model, driver’s condition classification as “norm” or “rejection of the norm”, making decisions on the person being audited. A medical worker conducting driver examination is presented with a neural network assessment of his intoxication state. On the basis of this assessment, an opinion on the admission or removal of the driver from driving the vehicle is drawn. Thus, the neural network model solves the problem of increasing the efficiency of pre-trip medical examination by increasing the reliability of the decisions made.
-
Modern methods of mathematical modeling of blood flow using reduced order methods
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 581-604Views (last year): 62. Citations: 2 (RSCI).The study of the physiological and pathophysiological processes in the cardiovascular system is one of the important contemporary issues, which is addressed in many works. In this work, several approaches to the mathematical modelling of the blood flow are considered. They are based on the spatial order reduction and/or use a steady-state approach. Attention is paid to the discussion of the assumptions and suggestions, which are limiting the scope of such models. Some typical mathematical formulations are considered together with the brief review of their numerical implementation. In the first part, we discuss the models, which are based on the full spatial order reduction and/or use a steady-state approach. One of the most popular approaches exploits the analogy between the flow of the viscous fluid in the elastic tubes and the current in the electrical circuit. Such models can be used as an individual tool. They also used for the formulation of the boundary conditions in the models using one dimensional (1D) and three dimensional (3D) spatial coordinates. The use of the dynamical compartment models allows describing haemodynamics over an extended period (by order of tens of cardiac cycles and more). Then, the steady-state models are considered. They may use either total spatial reduction or two dimensional (2D) spatial coordinates. This approach is used for simulation the blood flow in the region of microcirculation. In the second part, we discuss the models, which are based on the spatial order reduction to the 1D coordinate. The models of this type require relatively small computational power relative to the 3D models. Within the scope of this approach, it is also possible to include all large vessels of the organism. The 1D models allow simulation of the haemodynamic parameters in every vessel, which is included in the model network. The structure and the parameters of such a network can be set according to the literature data. It also exists methods of medical data segmentation. The 1D models may be derived from the 3D Navier – Stokes equations either by asymptotic analysis or by integrating them over a volume. The major assumptions are symmetric flow and constant shape of the velocity profile over a cross-section. These assumptions are somewhat restrictive and arguable. Some of the current works paying attention to the 1D model’s validation, to the comparing different 1D models and the comparing 1D models with clinical data. The obtained results reveal acceptable accuracy. It allows concluding, that the 1D approach can be used in medical applications. 1D models allow describing several dynamical processes, such as pulse wave propagation, Korotkov’s tones. Some physiological conditions may be included in the 1D models: gravity force, muscles contraction force, regulation and autoregulation.
-
Cellular automata review based on modern domestic publications
Computer Research and Modeling, 2019, v. 11, no. 1, pp. 9-57Views (last year): 58.The paper contains the analysis of the domestic publications issued in 2013–2017 years and devoted to cellular automata. The most of them concern on mathematical modeling. Scientometric schedules for 1990–2017 years have proved relevance of subject. The review allows to allocate the main personalities and the scientific directions/schools in modern Russian science, to reveal their originality or secondness in comparison with world science. Due to the authors choice of national publications basis instead of world, the paper claims the completeness and the fact is that about 200 items from the checked 526 references have an importance for science.
In the Annex to the review provides preliminary information about CA — the Game of Life, a theorem about gardens of Eden, elementary CAs (together with the diagram of de Brujin), block Margolus’s CAs, alternating CAs. Attention is paid to three important for modeling semantic traditions of von Neumann, Zuse and Zetlin, as well as to the relationship with the concepts of neural networks and Petri nets. It is allocated conditional 10 works, which should be familiar to any specialist in CA. Some important works of the 1990s and later are listed in the Introduction.
Then the crowd of publications is divided into categories: the modification of the CA and other network models (29 %), Mathematical properties of the CA and the connection with mathematics (5 %), Hardware implementation (3 %), Software implementation (5 %), Data Processing, recognition and Cryptography (8 %), Mechanics, physics and chemistry (20 %), Biology, ecology and medicine (15 %), Economics, urban studies and sociology (15 %). In parentheses the share of subjects in the array are indicated. There is an increase in publications on CA in the humanitarian sphere, as well as the emergence of hybrid approaches, leading away from the classic CA definition.
-
Development of network computational models for the study of nonlinear wave processes on graphs
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 777-814In various applications arise problems modeled by nonlinear partial differential equations on graphs (networks, trees). In order to study such problems and various extreme situations arose in the problems of designing and optimizing networks developed the computational model based on solving the corresponding boundary problems for partial differential equations of hyperbolic type on graphs (networks, trees). As applications, three different problems were chosen solved in the framework of the general approach of network computational models. The first was modeling of traffic flow. In solving this problem, a macroscopic approach was used in which the transport flow is described by a nonlinear system of second-order hyperbolic equations. The results of numerical simulations showed that the model developed as part of the proposed approach well reproduces the real situation various sections of the Moscow transport network on significant time intervals and can also be used to select the most optimal traffic management strategy in the city. The second was modeling of data flows in computer networks. In this problem data flows of various connections in packet data network were simulated as some continuous medium flows. Conceptual and mathematical network models are proposed. The numerical simulation was carried out in comparison with the NS-2 network simulation system. The results showed that in comparison with the NS-2 packet model the developed streaming model demonstrates significant savings in computing resources while ensuring a good level of similarity and allows us to simulate the behavior of complex globally distributed IP networks. The third was simulation of the distribution of gas impurities in ventilation networks. It was developed the computational mathematical model for the propagation of finely dispersed or gas impurities in ventilation networks using the gas dynamics equations by numerical linking of regions of different sizes. The calculations shown that the model with good accuracy allows to determine the distribution of gas-dynamic parameters in the pipeline network and solve the problems of dynamic ventilation management.
-
Methods for resolving the Braess paradox in the presence of autonomous vehicles
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 281-294Roads are a shared resource which can be used either by drivers and autonomous vehicles. Since the total number of vehicles increases annually, each considered vehicle spends more time in traffic jams, and thus the total travel time prolongs. The main purpose while planning the road system is to reduce the time spent on traveling. The optimization of transportation networks is a current goal, thus the formation of traffic flows by creating certain ligaments of the roads is of high importance. The Braess paradox states the existence of a network where the construction of a new edge leads to the increase of traveling time. The objective of this paper is to propose various solutions to the Braess paradox in the presence of autonomous vehicles. One of the methods of solving transportation topology problems is to introduce artificial restrictions on traffic. As an example of such restrictions, this article considers designated lanes which are available only for a certain type of vehicles. Designated lanes have their own location in the network and operating conditions. This article observes the most common two-roads traffic situations, analyzes them using analytical and numerical methods and presents the model of optimal traffic flow distribution, which considers different ways of lanes designation on isolated transportation networks. It was found that the modeling of designated lanes eliminates Braess’ paradox and optimizes the total traveling time. The solutions were shown on artificial networks and on the real-life example. A modeling algorithm for Braess network was proposed and its correctness was verified using the real-life example.
-
Views (last year): 6. Citations: 16 (RSCI).
Traditional classification of real complex networks on biological, technological and social is incomplete, as there is a huge variety of artworks, which structure also can be presented in the form of networks. In this paper the review of researches of the complex networks, modeling some literary, musical and painting works is given. Corresponding networks are offered for naming cognitive networks. The possible directions of studying of such networks are discussed.
-
An approach for the nonconvex uniformly concave structured saddle point problem
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 225-237Recently, saddle point problems have received much attention due to their powerful modeling capability for a lot of problems from diverse domains. Applications of these problems occur in many applied areas, such as robust optimization, distributed optimization, game theory, and many applications in machine learning such as empirical risk minimization and generative adversarial networks training. Therefore, many researchers have actively worked on developing numerical methods for solving saddle point problems in many different settings. This paper is devoted to developing a numerical method for solving saddle point problems in the nonconvex uniformly-concave setting. We study a general class of saddle point problems with composite structure and H\"older-continuous higher-order derivatives. To solve the problem under consideration, we propose an approach in which we reduce the problem to a combination of two auxiliary optimization problems separately for each group of variables, the outer minimization problem w.r.t. primal variables, and the inner maximization problem w.r.t the dual variables. For solving the outer minimization problem, we use the Adaptive Gradient Method, which is applicable for nonconvex problems and also works with an inexact oracle that is generated by approximately solving the inner problem. For solving the inner maximization problem, we use the Restarted Unified Acceleration Framework, which is a framework that unifies the high-order acceleration methods for minimizing a convex function that has H\"older-continuous higher-order derivatives. Separate complexity bounds are provided for the number of calls to the first-order oracles for the outer minimization problem and higher-order oracles for the inner maximization problem. Moreover, the complexity of the whole proposed approach is then estimated.
-
Neural network methods for optimal control problems
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 539-557In this study we discuss methods to solve optimal control problems based on neural network techniques. We study hierarchical dynamical two-level system for surface water quality control. The system consists of a supervisor (government) and a few agents (enterprises). We consider this problem from the point of agents. In this case we solve optimal control problem with constraints. To solve this problem, we use Pontryagin’s maximum principle, with which we obtain optimality conditions. To solve emerging ODEs, we use feedforward neural network. We provide a review of existing techniques to study such problems and a review of neural network’s training methods. To estimate the error of numerical solution, we propose to use defect analysis method, adapted for neural networks. This allows one to get quantitative error estimations of numerical solution. We provide examples of our method’s usage for solving synthetic problem and a surface water quality control model. We compare the results of this examples with known solution (when provided) and the results of shooting method. In all cases the errors, estimated by our method are of the same order as the errors compared with known solution. Moreover, we study surface water quality control problem when no solutions is provided by other methods. This happens because of relatively large time interval and/or the case of several agents. In the latter case we seek Nash equilibrium between agents. Thus, in this study we show the ability of neural networks to solve various problems including optimal control problems and differential games and we show the ability of quantitative estimation of an error. From the numerical results we conclude that the presence of the supervisor is necessary for achieving the sustainable development.
-
A possible modification of the discrete mathematical model of transport network dynamics
Computer Research and Modeling, 2013, v. 5, no. 3, pp. 395-401Views (last year): 5. Citations: 5 (RSCI).The aim of this article is to study the discrete mathematical model of transport network dynamics, recently built by author. The study showed some drawbacks of the basic model and the ways of overcoming these drawbacks, and an improved version of the model was proposed. Simulation systems, created on the basis of this new model were used to do test calculations similar to those previously done with the help of the basic model. The results of these calculations with both models are compared.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"