Результаты поиска по 'numerical methods':
Найдено статей: 311
  1. Shumov V.V.
    Consideration of psychological factors in models of the battle (conflict)
    Computer Research and Modeling, 2016, v. 8, no. 6, pp. 951-964

    The course and outcome of the battle is largely dependent on the morale of the troops, characterized by the percentage of loss in killed and wounded, in which the troops still continue to fight. Every fight is a psychological act of ending his rejection of one of the parties. Typically, models of battle psychological factor taken into account in the decision of Lanchester equations (the condition of equality of forces, when the number of one of the parties becomes zero). It is emphasized that the model Lanchester type satisfactorily describe the dynamics of the battle only in the initial stages. To resolve this contradiction is proposed to use a modification of Lanchester's equations, taking into account the fact that at any moment of the battle on the enemy firing not affected and did not abandon the battle fighters. The obtained differential equations are solved by numerical method and allow the dynamics to take into account the influence of psychological factor and evaluate the completion time of the conflict. Computational experiments confirm the known military theory is the fact that the fight usually ends in refusal of soldiers of one of the parties from its continuation (avoidance of combat in various forms). Along with models of temporal and spatial dynamics proposed to use a modification of the technology features of the conflict of S. Skaperdas, based on the principles of combat. To estimate the probability of victory of one side in the battle takes into account the interest of the maturing sides of the bloody casualties and increased military superiority.

    Views (last year): 7. Citations: 4 (RSCI).
  2. Shokirov F.S.
    Interaction of a breather with a domain wall in a two-dimensional O(3) nonlinear sigma model
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 773-787

    By numerical simulation methods the interaction processes of oscillating soliton (breather) with a 180-degree Neel domain wall in the framework of a (2 + 1)-dimensional supersymmetric O(3) nonlinear sigma model is studied. The purpose of this paper is to investigate nonlinear evolution and stability of a system of interacting localized dynamic and topological solutions. To construct the interaction models, were used a stationary breather and domain wall solutions, where obtained in the framework of the two-dimensional sine-Gordon equation by adding specially selected perturbations to the A3-field vector in the isotopic space of the Bloch sphere. In the absence of an external magnetic field, nonlinear sigma models have formal Lorentz invariance, which allows constructing, in particular, moving solutions and analyses the experimental data of the nonlinear dynamics of an interacting solitons system. In this paper, based on the obtained moving localized solutions, models for incident and head-on collisions of breathers with a domain wall are constructed, where, depending on the dynamic parameters of the system, are observed the collisions and reflections of solitons from each other, a long-range interactions and also the decay of an oscillating soliton into linear perturbation waves. In contrast to the breather solution that has the dynamics of the internal degree of freedom, the energy integral of a topologically stable soliton in the all experiments the preserved with high accuracy. For each type of interaction, the range of values of the velocity of the colliding dynamic and topological solitons is determined as a function of the rotation frequency of the A3-field vector in the isotopic space. Numerical models are constructed on the basis of methods of the theory of finite difference schemes, using the properties of stereographic projection, taking into account the group-theoretical features of constructions of the O(N) class of nonlinear sigma models of field theory. On the perimeter of the two-dimensional modeling area, specially developed boundary conditions are established that absorb linear perturbation waves radiated by interacting soliton fields. Thus, the simulation of the interaction processes of localized solutions in an infinite two-dimensional phase space is carried out. A software module has been developed that allows to carry out a complex analysis of the evolution of interacting solutions of nonlinear sigma models of field theory, taking into account it’s group properties in a two-dimensional pseudo-Euclidean space. The analysis of isospin dynamics, as well the energy density and energy integral of a system of interacting dynamic and topological solitons is carried out.

    Views (last year): 6.
  3. Koroleva M.R., Mishenkova O.V., Raeder T., Tenenev V.A., Chernova A.A.
    Numerical simulation of the process of activation of the safety valve
    Computer Research and Modeling, 2018, v. 10, no. 4, pp. 495-509

    The conjugate problem of disk movement into gas-filled volume of the spring-type safety valve is solved. The questions of determining the physically correct value of the disk initial lift are considered. The review of existing approaches and methods for solving of such type problems is conducted. The formulation of the problem about the valve actuation when the vessel pressure rises and the mathematical model of the actuation processes are given. A special attention to the binding of physical subtasks is paid. Used methods, numerical schemes and algorithms are described. The mathematical modeling is performed on basе the fundamental system of differential equations for viscous gas movement with the equation for displacement of disk valve. The solution of this problem in the axe symmetric statement is carried out numerically using the finite volume method. The results obtained by the viscous and inviscid models are compared. In an inviscid formulation this problem is solved using the Godunov scheme, and in a viscous formulation is solved using the Kurganov – Tadmor method. The dependence of the disk displacement on time was obtained and compared with the experimental data. The pressure distribution on the disk surface, velocity profiles in the cross sections of the gap for different disk heights are given. It is shown that a value of initial drive lift it does not affect on the gas flow and valve movement part dynamic. It can significantly reduce the calculation time of the full cycle of valve work. Immediate isotahs for various elevations of the disk are presented. The comparison of jet flow over critical section is given. The data carried out by two numerical experiments are well correlated with each other. So, the inviscid model can be applied to the numerical modeling of the safety valve dynamic.

    Views (last year): 34. Citations: 1 (RSCI).
  4. Nevmerzhitskiy Y.V.
    Application of the streamline method for nonlinear filtration problems acceleration
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 709-728

    The paper contains numerical simulation of nonisothermal nonlinear flow in a porous medium. Twodimensional unsteady problem of heavy oil, water and steam flow is considered. Oil phase consists of two pseudocomponents: light and heavy fractions, which like the water component, can vaporize. Oil exhibits viscoplastic rheology, its filtration does not obey Darcy's classical linear law. Simulation considers not only the dependence of fluids density and viscosity on temperature, but also improvement of oil rheological properties with temperature increasing.

    To solve this problem numerically we use streamline method with splitting by physical processes, which consists in separating the convective heat transfer directed along filtration from thermal conductivity and gravitation. The article proposes a new approach to streamline methods application, which allows correctly simulate nonlinear flow problems with temperature-dependent rheology. The core of this algorithm is to consider the integration process as a set of quasi-equilibrium states that are results of solving system on a global grid. Between these states system solved on a streamline grid. Usage of the streamline method allows not only to accelerate calculations, but also to obtain a physically reliable solution, since integration takes place on a grid that coincides with the fluid flow direction.

    In addition to the streamline method, the paper presents an algorithm for nonsmooth coefficients accounting, which arise during simulation of viscoplastic oil flow. Applying this algorithm allows keeping sufficiently large time steps and does not change the physical structure of the solution.

    Obtained results are compared with known analytical solutions, as well as with the results of commercial package simulation. The analysis of convergence tests on the number of streamlines, as well as on different streamlines grids, justifies the applicability of the proposed algorithm. In addition, the reduction of calculation time in comparison with traditional methods demonstrates practical significance of the approach.

    Views (last year): 18.
  5. Sokolov A.V., Mamkin V.V., Avilov V.K., Tarasov D.L., Kurbatova Y.A., Olchev A.V.
    Application of a balanced identification method for gap-filling in CO2 flux data in a sphagnum peat bog
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 153-171

    The method of balanced identification was used to describe the response of Net Ecosystem Exchange of CO2 (NEE) to change of environmental factors, and to fill the gaps in continuous CO2 flux measurements in a sphagnum peat bog in the Tver region. The measurements were provided in the peat bog by the eddy covariance method from August to November of 2017. Due to rainy weather conditions and recurrent periods with low atmospheric turbulence the gap proportion in measured CO2 fluxes at our experimental site during the entire period of measurements exceeded 40%. The model developed for the gap filling in long-term experimental data considers the NEE as a difference between Ecosystem Respiration (RE) and Gross Primary Production (GPP), i.e. key processes of ecosystem functioning, and their dependence on incoming solar radiation (Q), soil temperature (T), water vapor pressure deficit (VPD) and ground water level (WL). Applied for this purpose the balanced identification method is based on the search for the optimal ratio between the model simplicity and the data fitting accuracy — the ratio providing the minimum of the modeling error estimated by the cross validation method. The obtained numerical solutions are characterized by minimum necessary nonlinearity (curvature) that provides sufficient interpolation and extrapolation characteristics of the developed models. It is particularly important to fill the missing values in NEE measurements. Reviewing the temporary variability of NEE and key environmental factors allowed to reveal a statistically significant dependence of GPP on Q, T, and VPD, and RE — on T and WL, respectively. At the same time, the inaccuracy of applied method for simulation of the mean daily NEE, was less than 10%, and the error in NEE estimates by the method was higher than by the REddyProc model considering the influence on NEE of fewer number of environmental parameters. Analyzing the gap-filled time series of NEE allowed to derive the diurnal and inter-daily variability of NEE and to obtain cumulative CO2 fluxs in the peat bog for selected summer-autumn period. It was shown, that the rate of CO2 fixation by peat bog vegetation in August was significantly higher than the rate of ecosystem respiration, while since September due to strong decrease of GPP the peat bog was turned into a consistent source of CO2 for the atmosphere.

    Views (last year): 19.
  6. Spiridonov A.O., Karchevskii E.M.
    Mathematical and numerical modeling of a drop-shaped microcavity laser
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1083-1090

    This paper studies electromagnetic fields, frequencies of lasing, and emission thresholds of a drop-shaped microcavity laser. From the mathematical point of view, the original problem is a nonstandard two-parametric eigenvalue problem for the Helmholtz equation on the whole plane. The desired positive parameters are the lasing frequency and the threshold gain, the corresponding eigenfunctions are the amplitudes of the lasing modes. This problem is usually referred to as the lasing eigenvalue problem. In this study, spectral characteristics are calculated numerically, by solving the lasing eigenvalue problem on the basis of the set of Muller boundary integral equations, which is approximated by the Nystr¨om method. The Muller equations have weakly singular kernels, hence the corresponding operator is Fredholm with zero index. The Nyström method is a special modification of the polynomial quadrature method for boundary integral equations with weakly singular kernels. This algorithm is accurate for functions that are well approximated by trigonometric polynomials, for example, for eigenmodes of resonators with smooth boundaries. This approach leads to a characteristic equation for mode frequencies and lasing thresholds. It is a nonlinear algebraic eigenvalue problem, which is solved numerically by the residual inverse iteration method. In this paper, this technique is extended to the numerical modeling of microcavity lasers having a more complicated form. In contrast to the microcavity lasers with smooth contours, which were previously investigated by the Nyström method, the drop has a corner. We propose a special modification of the Nyström method for contours with corners, which takes also the symmetry of the resonator into account. The results of numerical experiments presented in the paper demonstrate the practical effectiveness of the proposed algorithm.

  7. Tukmakov D.A.
    Numerical study of intense shock waves in dusty media with a homogeneous and two-component carrier phase
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 141-154

    The article is devoted to the numerical study of shock-wave flows in inhomogeneous media–gas mixtures. In this work, a two-speed two-temperature model is used, in which the dispersed component of the mixture has its own speed and temperature. To describe the change in the concentration of the dispersed component, the equation of conservation of “average density” is solved. This study took into account interphase thermal interaction and interphase pulse exchange. The mathematical model allows the carrier component of the mixture to be described as a viscous, compressible and heat-conducting medium. The system of equations was solved using the explicit Mac-Cormack second-order finite-difference method. To obtain a monotone numerical solution, a nonlinear correction scheme was applied to the grid function. In the problem of shock-wave flow, the Dirichlet boundary conditions were specified for the velocity components, and the Neumann boundary conditions were specified for the other unknown functions. In numerical calculations, in order to reveal the dependence of the dynamics of the entire mixture on the properties of the solid component, various parameters of the dispersed phase were considered — the volume content as well as the linear size of the dispersed inclusions. The goal of the research was to determine how the properties of solid inclusions affect the parameters of the dynamics of the carrier medium — gas. The motion of an inhomogeneous medium in a shock duct divided into two parts was studied, the gas pressure in one of the channel compartments is more important than in the other. The article simulated the movement of a direct shock wave from a high-pressure chamber to a low–pressure chamber filled with a dusty medium and the subsequent reflection of a shock wave from a solid surface. An analysis of numerical calculations showed that a decrease in the linear particle size of the gas suspension and an increase in the physical density of the material from which the particles are composed leads to the formation of a more intense reflected shock wave with a higher temperature and gas density, as well as a lower speed of movement of the reflected disturbance reflected wave.

  8. Lysych M.N.
    Computer simulation of the process soil treatment by tillage tools of soil processing machines
    Computer Research and Modeling, 2020, v. 12, no. 3, pp. 607-627

    The paper analyzes the methods of studying the process of interaction of soil environments with the tillage tools of soil processing machines. The mathematical methods of numerical modeling are considered in detail, which make it possible to overcome the disadvantages of analytical and empirical approaches. A classification and overview of the possibilities the continuous (FEM — finite element method, CFD — computational fluid dynamics) and discrete (DEM — discrete element method, SPH — hydrodynamics of smoothed particles) numerical methods is presented. Based on the discrete element method, a mathematical model has been developed that represents the soil in the form of a set of interacting small spherical elements. The working surfaces of the tillage tool are presented in the framework of the finite element approximation in the form of a combination of many elementary triangles. The model calculates the movement of soil elements under the action of contact forces of soil elements with each other and with the working surfaces of the tillage tool (elastic forces, dry and viscous friction forces). This makes it possible to assess the influence of the geometric parameters of the tillage tools, technological parameters of the process and soil parameters on the geometric indicators of soil displacement, indicators of the self-installation of tools, power loads, quality indicators of loosening and spatial distribution of indicators. A total of 22 indicators were investigated (or the distribution of the indicator in space). This makes it possible to reproduce changes in the state of the system of elements of the soil (soil cultivation process) and determine the total mechanical effect of the elements on the moving tillage tools of the implement. A demonstration of the capabilities of the mathematical model is given by the example of a study of soil cultivation with a disk cultivator battery. In the computer experiment, a virtual soil channel of 5×1.4 m in size and a 3D model of a disk cultivator battery were used. The radius of the soil particles was taken to be 18 mm, the speed of the tillage tool was 1 m/s, the total simulation time was 5 s. The processing depth was 10 cm at angles of attack of 10, 15, 20, 25 and 30°. The verification of the reliability of the simulation results was carried out on a laboratory stand for volumetric dynamometry by examining a full-scale sample, made in full accordance with the investigated 3D-model. The control was carried out according to three components of the traction resistance vector: $F_x$, $F_y$ and $F_z$. Comparison of the data obtained experimentally with the simulation data showed that the discrepancy is not more than 22.2%, while in all cases the maximum discrepancy was observed at angles of attack of the disk battery of 30°. Good consistency of data on three key power parameters confirms the reliability of the whole complex of studied indicators.

  9. Zeyde K.M., Vardugina A.Y., Marvin S.V.
    Fast method for analyzing the electromagnetic field perturbation by small spherical scatterer
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1039-1050

    In this work, we consider a special approximation of the general perturbation formula for the electromagnetic field by a set of electrically small inhomogeneities located in the domain of interest. The problem considered in this paper arises in many applications of technical electrodynamics, radar technologies and subsurface remote sensing. In the general case, it is formulated as follows: at some point in the perturbed domain, it is necessary to determine the amplitude of the electromagnetic field. The perturbation of electromagnetic waves is caused by a set of electrically small scatterers distributed in space. The source of electromagnetic waves is also located in perturbed domain. The problem is solved by introducing the far field approximation and through the formulation for the scatterer radar cross section value. This, in turn, allows one to significantly speed up the calculation process of the perturbed electromagnetic field by a set of a spherical inhomogeneities identical to each other with arbitrary electrophysical parameters. In this paper, we consider only the direct scattering problem; therefore, all parameters of the scatterers are known. In this context, it may be argued that the formulation corresponds to the well-posed problem and does not imply the solution of the integral equation in the generalized formula. One of the features of the proposed algorithm is the allocation of a characteristic plane at the domain boundary. All points of observation of the state of the system belong to this plane. Set of the scatterers is located inside the observation region, which is formed by this surface. The approximation is tested by comparing the results obtained with the solution of the general formula method for the perturbation of the electromagnetic field. This approach, among other things, allows one to remove a number of restrictions on the general perturbation formula for E-filed analysis.

  10. Zimina S.V., Petrov M.N.
    Application of Random Forest to construct a local operator for flow fields refinement in external aerodynamics problems
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 761-778

    Numerical modeling of turbulent flows requires finding the balance between accuracy and computational efficiency. For example, DNS and LES models allow to obtain more accurate results, comparing to RANS models, but are more computationally expensive. Because of this, modern applied simulations are mostly performed with RANS models. But even RANS models can be computationally expensive for complex geometries or series simulations due to the necessity of resolving the boundary layer. Some methods, such as wall functions and near-wall domain decomposition, allow to significantly improve the speed of RANS simulations. However, they inevitably lose precision due to using a simplified model in the near-wall domain. To obtain a model that is both accurate and computationally efficient, it is possible to construct a surrogate model based on previously made simulations using the precise model.

    In this paper, an operator is constructed that allows reconstruction of the flow field obtained by an accurate model based on the flow field obtained by the simplified model. Spalart–Allmaras model with approximate nearwall domain decomposition and Spalart–Allmaras model resolving the near-wall region are taken as the simplified and the base models respectively. The operator is constructed using a local approach, i. e. to reconstruct a point in the flow field, only features (flow variables and their derivatives) at this point in the field are used. The operator is constructed using the Random Forest algorithm. The efficiency and accuracy of the obtained surrogate model are demonstrated on the supersonic flow over a compression corner with different values for angle $\alpha$ and Reynolds number. The investigation has been conducted into interpolation and extrapolation both by $Re$ and $\alpha$.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"