All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Mathematical modeling of carcinoma growth with a dynamic change in the phenotype of cells
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 879-902Views (last year): 46.In this paper, we proposed a two-dimensional chemo-mechanical model of the growth of invasive carcinoma in epithelial tissue. Each cell is modeled by an elastic polygon, changing its shape and size under the influence of pressure forces acting from the tissue. The average size and shape of the cells have been calibrated on the basis of experimental data. The model allows to describe the dynamic deformations in epithelial tissue as a collective evolution of cells interacting through the exchange of mechanical and chemical signals. The general direction of tumor growth is controlled by a pre-established linear gradient of nutrient concentration. Growth and deformation of the tissue occurs due to the mechanisms of cell division and intercalation. We assume that carcinoma has a heterogeneous structure made up of cells of different phenotypes that perform various functions in the tumor. The main parameter that determines the phenotype of a cell is the degree of its adhesion to the adjacent cells. Three main phenotypes of cancer cells are distinguished: the epithelial (E) phenotype is represented by internal tumor cells, the mesenchymal (M) phenotype is represented by single cells and the intermediate phenotype is represented by the frontal tumor cells. We assume also that the phenotype of each cell under certain conditions can change dynamically due to epithelial-mesenchymal (EM) and inverse (ME) transitions. As for normal cells, we define the main E-phenotype, which is represented by ordinary cells with strong adhesion to each other. In addition, the normal cells that are adjacent to the tumor undergo a forced EM-transition and form an M-phenotype of healthy cells. Numerical simulations have shown that, depending on the values of the control parameters as well as a combination of possible phenotypes of healthy and cancer cells, the evolution of the tumor can result in a variety of cancer structures reflecting the self-organization of tumor cells of different phenotypes. We compare the structures obtained numerically with the morphological structures revealed in clinical studies of breast carcinoma: trabecular, solid, tubular, alveolar and discrete tumor structures with ameboid migration. The possible scenario of morphogenesis for each structure is discussed. We describe also the metastatic process during which a single cancer cell of ameboid phenotype moves due to intercalation in healthy epithelial tissue, then divides and undergoes a ME transition with the appearance of a secondary tumor.
-
Model for operational optimal control of financial recourses distribution in a company
Computer Research and Modeling, 2019, v. 11, no. 2, pp. 343-358Views (last year): 33.A critical analysis of existing approaches, methods and models to solve the problem of financial resources operational management has been carried out in the article. A number of significant shortcomings of the presented models were identified, limiting the scope of their effective usage. There are a static nature of the models, probabilistic nature of financial flows are not taken into account, daily amounts of receivables and payables that significantly affect the solvency and liquidity of the company are not identified. This necessitates the development of a new model that reflects the essential properties of the planning financial flows system — stochasticity, dynamism, non-stationarity.
The model for the financial flows distribution has been developed. It bases on the principles of optimal dynamic control and provides financial resources planning ensuring an adequate level of liquidity and solvency of a company and concern initial data uncertainty. The algorithm for designing the objective cash balance, based on principles of a companies’ financial stability ensuring under changing financial constraints, is proposed.
Characteristic of the proposed model is the presentation of the cash distribution process in the form of a discrete dynamic process, for which a plan for financial resources allocation is determined, ensuring the extremum of an optimality criterion. Designing of such plan is based on the coordination of payments (cash expenses) with the cash receipts. This approach allows to synthesize different plans that differ in combinations of financial outflows, and then to select the best one according to a given criterion. The minimum total costs associated with the payment of fines for non-timely financing of expenses were taken as the optimality criterion. Restrictions in the model are the requirement to ensure the minimum allowable cash balances for the subperiods of the planning period, as well as the obligation to make payments during the planning period, taking into account the maturity of these payments. The suggested model with a high degree of efficiency allows to solve the problem of financial resources distribution under uncertainty over time and receipts, coordination of funds inflows and outflows. The practical significance of the research is in developed model application, allowing to improve the financial planning quality, to increase the management efficiency and operational efficiency of a company.
-
High-throughput identification of hydride phase-change kinetics models
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 171-183Metal hydrides are an interesting class of chemical compounds that can reversibly bind a large amount of hydrogen and are, therefore, of interest for energy applications. Understanding the factors affecting the kinetics of hydride formation and decomposition is especially important. Features of the material, experimental setup and conditions affect the mathematical description of the processes, which can undergo significant changes during the processing of experimental data. The article proposes a general approach to numerical modeling of the formation and decomposition of metal hydrides and solving inverse problems of estimating material parameters from measurement data. The models are divided into two classes: diffusive ones, that take into account the gradient of hydrogen concentration in the metal lattice, and models with fast diffusion. The former are more complex and take the form of non-classical boundary value problems of parabolic type. A rather general approach to the grid solution of such problems is described. The second ones are solved relatively simply, but can change greatly when model assumptions change. Our experience in processing experimental data shows that a flexible software tool is needed; a tool that allows, on the one hand, building models from standard blocks, freely changing them if necessary, and, on the other hand, avoiding the implementation of routine algorithms. It also should be adapted for high-performance systems of different paradigms. These conditions are satisfied by the HIMICOS library presented in the paper, which has been tested on a large number of experimental data. It allows simulating the kinetics of formation and decomposition of metal hydrides, as well as related tasks, at three levels of abstraction. At the low level, the user defines the interface procedures, such as calculating the time layer based on the previous layer or the entire history, calculating the observed value and the independent variable from the task variables, comparing the curve with the reference. Special algorithms can be used for solving quite general parabolic-type boundary value problems with free boundaries and with various quasilinear (i.e., linear with respect to the derivative only) boundary conditions, as well as calculating the distance between the curves in different metric spaces and with different normalization. This is the middle level of abstraction. At the high level, it is enough to choose a ready tested model for a particular material and modify it in relation to the experimental conditions.
-
Population waves and their bifurcations in a model “active predator – passive prey”
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 831-843Our purpose is to study the spatio-temporal population wave behavior observed in the predator-prey system. It is assumed that predators move both directionally and randomly, and prey spread only diffusely. The model does not take into account demographic processes in the predator population; it’s total number is constant and is a parameter. The variables of the model are the prey and predator densities and the predator speed, which are connected by a system of three reaction – diffusion – advection equations. The system is considered on an annular range, that is the periodic conditions are set at the boundaries of the interval. We have studied the bifurcations of wave modes arising in the system when two parameters are changed — the total number of predators and their taxis acceleration coefficient.
The main research method is a numerical analysis. The spatial approximation of the problem in partial derivatives is performed by the finite difference method. Integration of the obtained system of ordinary differential equations in time is carried out by the Runge –Kutta method. The construction of the Poincare map, calculation of Lyapunov exponents, and Fourier analysis are used for a qualitative analysis of dynamic regimes.
It is shown that, population waves can arise as a result of existence of directional movement of predators. The population dynamics in the system changes qualitatively as the total predator number increases. А stationary homogeneous regime is stable at low value of parameter, then it is replaced by self-oscillations in the form of traveling waves. The waveform becomes more complicated as the bifurcation parameter increases; its complexity occurs due to an increase in the number of temporal vibrational modes. A large taxis acceleration coefficient leads to the possibility of a transition from multi-frequency to chaotic and hyperchaotic population waves. A stationary regime without preys becomes stable with a large number of predators.
-
Investigation of the averaged model of coked catalyst oxidative regeneration
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 149-161The article is devoted to the construction and investigation of an averaged mathematical model of an aluminum-cobalt-molybdenum hydrocracking catalyst oxidative regeneration. The oxidative regeneration is an effective means of restoring the activity of the catalyst when its granules are coating with coke scurf.
The mathematical model of this process is a nonlinear system of ordinary differential equations, which includes kinetic equations for reagents’ concentrations and equations for changes in the temperature of the catalyst granule and the reaction mixture as a result of isothermal reactions and heat transfer between the gas and the catalyst layer. Due to the heterogeneity of the oxidative regeneration process, some of the equations differ from the standard kinetic ones and are based on empirical data. The article discusses the scheme of chemical interaction in the regeneration process, which the material balance equations are compiled on the basis of. It reflects the direct interaction of coke and oxygen, taking into account the degree of coverage of the coke granule with carbon-hydrogen and carbon-oxygen complexes, the release of carbon monoxide and carbon dioxide during combustion, as well as the release of oxygen and hydrogen inside the catalyst granule. The change of the radius and, consequently, the surface area of coke pellets is taken into account. The adequacy of the developed averaged model is confirmed by an analysis of the dynamics of the concentrations of substances and temperature.
The article presents a numerical experiment for a mathematical model of oxidative regeneration of an aluminum-cobalt-molybdenum hydrocracking catalyst. The experiment was carried out using the Kutta–Merson method. This method belongs to the methods of the Runge–Kutta family, but is designed to solve stiff systems of ordinary differential equations. The results of a computational experiment are visualized.
The paper presents the dynamics of the concentrations of substances involved in the oxidative regeneration process. A conclusion on the adequacy of the constructed mathematical model is drawn on the basis of the correspondence of the obtained results to physicochemical laws. The heating of the catalyst granule and the release of carbon monoxide with a change in the radius of the granule for various degrees of initial coking are analyzed. There are a description of the results.
In conclusion, the main results and examples of problems which can be solved using the developed mathematical model are noted.
-
Study of turbulence models for calculating a strongly swirling flow in an abrupt expanding channel
Computer Research and Modeling, 2021, v. 13, no. 4, pp. 793-805In this paper, compared fundamentally different turbulence models for calculating a strongly swirling flow in an abrupt expanding pipe. This task is not only of great importance in practice, but also in theoretical terms. Because in such a flow a very complex anisotropic turbulence with recirculation zones arises and the study of the ongoing processes allows us to find an answer to many questions about turbulence. The flow under consideration has been well studied experimentally. Therefore, it is a very complex and interesting test problem for turbulence models. In the paper compared the numerical results of the one-parameter vt-92 model, the SSG/LRR-RSMw2012 Reynolds stress method and the new two-fluid model. These models are very different from each other. Because the Boussinesq hypothesis is used in the one-parameter vt-92 model, in the SSG/LRR-RSM-w2012 model, its own equation is written for each stress, and for the new two-fluid model, the basis is a completely different approach to turbulence. A feature of the approach to turbulence for the new two-fluid model is that it allows one to obtain a closed system of equations. Comparison of these models is carried out not only by the correspondence of their results with experimental data, but also by the computational resources expended on the numerical implementation of these models. Therefore, in this work, for all models, the same technique was used to numerically calculate the turbulent swirling flow at the Reynolds number $Re=3\cdot 10^4$ and the swirl parameter $S_w=0.6$. In the paper showed that the new two-fluid model is effective for the study of turbulent flows, because has good accuracy in describing complex anisotropic turbulent flows and is simple enough for numerical implementation.
-
On the permissible intensity of laser radiation in the optical system and on the technology for measuring the absorption coefficient of its power
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1025-1044Laser damage to transparent solids is a major limiting factor output power of laser systems. For laser rangefinders, the most likely destruction cause of elements of the optical system (lenses, mirrors) actually, as a rule, somewhat dusty, is not an optical breakdown as a result of avalanche, but such a thermal effect on the dust speck deposited on an element of the optical system (EOS), which leads to its ignition. It is the ignition of a speck of dust that initiates the process of EOS damage.
The corresponding model of this process leading to the ignition of a speck of dust takes into account the nonlinear Stefan –Boltzmann law of thermal radiation and the infinite thermal effect of periodic radiation on the EOS and the speck of dust. This model is described by a nonlinear system of differential equations for two functions: the EOS temperature and the dust particle temperature. It is proved that due to the accumulating effect of periodic thermal action, the process of reaching the dust speck ignition temperature occurs almost at any a priori possible changes in this process of the thermophysical parameters of the EOS and the dust speck, as well as the heat exchange coefficients between them and the surrounding air. Averaging these parameters over the variables related to both the volume and the surfaces of the dust speck and the EOS is correct under the natural constraints specified in the paper. The entire really significant spectrum of thermophysical parameters is covered thanks to the use of dimensionless units in the problem (including numerical results).
A thorough mathematical study of the corresponding nonlinear system of differential equations made it possible for the first time for the general case of thermophysical parameters and characteristics of the thermal effect of periodic laser radiation to find a formula for the value of the permissible radiation intensity that does not lead to the destruction of the EOS as a result of the ignition of a speck of dust deposited on the EOS. The theoretical value of the permissible intensity found in the general case in the special case of the data from the Grasse laser ranging station (south of France) almost matches that experimentally observed in the observatory.
In parallel with the solution of the main problem, we derive a formula for the power absorption coefficient of laser radiation by an EOS expressed in terms of four dimensionless parameters: the relative intensity of laser radiation, the relative illumination of the EOS, the relative heat transfer coefficient from the EOS to the surrounding air, and the relative steady-state temperature of the EOS.
-
Modeling of the supply–demand imbalance in engineering labor market
Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1249-1273Nowadays the situation of supply-demand imbalances in the professionals’ labor markets causes human capital losses as far as hampers scientific and innovation development. In Russia, supply-demand imbalances in the engineering labor market are associated with deindustrialization processes and manufacturing decline, resulted in a negative public perception of the engineering profession and high rates of graduates not working within the specialty or changing their occupation.
For analysis of the supply-demand imbalances in the engineering labor market, we elaborated a macroeconomic model. The model consists of 14 blocks, including blocks for demand and supply for engineers and technicians, along with the blocks for macroeconomic indicators as industry and service sector output, capital investment. Using this model, we forecasted the perspective supply-demand imbalances in the engineering labor market in a short-term period and examined the parameters of getting supply-demand balance in the medium-term perspective.
The results obtained show that situation of more balanced supply and demand for engineering labor is possible if there is simultaneous increase in the share of investments in fixed assets of manufacturing and relative wages in industry, besides getting to balance is facilitated by a decrease of the share of graduates not working by specialty. It is worth noting that a decrease in the share of graduates not working by specialty may be affected whether by the growth of relative wages in industry and number of vacancies or by the implementation of measures aimed at improving the working conditions of the engineering workforce and increasing the attractiveness of the profession. To summarize, in the case of the simplest scenario, not considering additional measures of working conditions improvement and increasing the attractiveness of the profession, the conditions of supply-demand balance achievement implies slightly lower growth rates of investment in industry than required in scenarios that involve increasing the share of engineers and technicians working in their specialty after graduation. The latter case, where a gradual decrease in the proportion of those who do not work in engineering specialty is expected, requires, probably, higher investment costs for attracting specialists and creating new jobs, as well as additional measures to strengthen the attractiveness of the engineering profession.
-
Technoscape: multi-agent model for evolution of network of cities, joined by production and trade links
Computer Research and Modeling, 2022, v. 14, no. 1, pp. 163-178The paper presents agent-based model for city formation named Technoscape which is both local and nonlocal. Technoscape can, to a certain degree, be also assumed as a model for emergence of global economy. The current version of the model implements very simple way of agents’ behavior and interaction, still the model provides rather interesting spatio-temporal patterns.
Locality and non-locality mean here the spatial features of the way the agents interact with each other and with geographical space upon which the evolution takes place. Technoscape agent is some conventional artisan, family, or а producing and trading firm, while there is no difference between production and trade. Agents are located upon and move through bounded two-dimensional space divided into square cells. The model demonstrates processes of agents’ concentration in a small set of cells, which is interpreted as «city» formation. Agents are immortal, they don’t mutate and evolve, though this is interesting perspective for the evolution of the model itself.
Technoscape provides some distinctively new type of self-organization. Partially, this type of selforganization resembles the behavior of segregation model by Thomas Shelling, still that model has evolution rules substantially different from Technoscape. In Shelling model there exist avalanches still simple equilibria exist if no new agents are added to the game board, while in Technoscape no such equilibria exist. At best, we can observe quasi-equilibrium, slowly changing global states.
One non-trivial phenomenon Technoscape exhibits, which also contrasts to Shelling segregation model, is the ability of agents to concentrate in local cells (interpreted as cities) even explicitly and totally ignoring local interactions, using non-local interactions only.
At the same time, while the agents tend to concentrate in large one-cell cities, large scale of such cities does not guarantee them from decay: there always exists a process of «enticement» of agents and their flow to new cities.
-
Modeling the dynamics of public attention to extended processes on the example of the COVID-19 pandemic
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1131-1141The dynamics of public attention to COVID-19 epidemic is studied. The level of public attention is described by the daily number of search requests in Google made by users from a given country. In the empirical part of the work, data on the number of requests and the number of infected cases for a number of countries are considered. It is shown that in all cases the maximum of public attention occurs earlier than the maximum daily number of newly infected individuals. Thus, for a certain period of time, the growth of the epidemics occurs in parallel with the decline in public attention to it. It is also shown that the decline in the number of requests is described by an exponential function of time. In order to describe the revealed empirical pattern, a mathematical model is proposed, which is a modification of the model of the decline in attention after a one-time political event. The model develops the approach that considers decision-making by an individual as a member of the society in which the information process takes place. This approach assumes that an individual’s decision about whether or not to make a request on a given day about COVID is based on two factors. One of them is an attitude that reflects the individual’s long-term interest in a given topic and accumulates the individual’s previous experience, cultural preferences, social and economic status. The second is the dynamic factor of public attention to the epidemic, which changes during the process under consideration under the influence of informational stimuli. With regard to the subject under consideration, information stimuli are related to epidemic dynamics. The behavioral hypothesis is that if on some day the sum of the attitude and the dynamic factor exceeds a certain threshold value, then on that day the individual in question makes a search request on the topic of COVID. The general logic is that the higher the rate of infection growth, the higher the information stimulus, the slower decreases public attention to the pandemic. Thus, the constructed model made it possible to correlate the rate of exponential decrease in the number of requests with the rate of growth in the number of cases. The regularity found with the help of the model was tested on empirical data. It was found that the Student’s statistic is 4.56, which allows us to reject the hypothesis of the absence of a correlation with a significance level of 0.01.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"