All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Multi-particle Brownian Dynamics software ProKSim for protein-protein interactions modeling
Computer Research and Modeling, 2013, v. 5, no. 1, pp. 47-64Views (last year): 4. Citations: 8 (RSCI).Protein-protein interactions are of central importance for virtually every process in living matter. Modeling the dynamics of protein association is crucial for understanding their functionality. This paper proposes novel simulation software ProKSim (Protein Kinetics Simulator) for modeling of protein interactions by means of the multi-particle Brownian Dynamics. Effect of long-range electrostatic interactions on the process of transient encounter complex formation is numerically estimated. Investigation of transient encounter complex formation was performed for three pairs of proteins: ferredoxin and ferredoxin:NADP+-redustase, plastocyanin and cytochrome f, barnase and barstar.
-
Interaction of cytokine LIF with the lipidic matrix of membranes
Computer Research and Modeling, 2010, v. 2, no. 1, pp. 43-49Integration of LIF protein into the bilayer lipid membrane causes the formation of ion channels. The data on activity of ion channels formed by recombinant protein from mouse and human origin are shown. Also the difference in the effect of LIF protein from eukaryotic and prokaryotic origin is shown.
-
Molecular dynamics assessment of the mechanical properties of fibrillar actin
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1081-1092Actin is a conserved structural protein that is expressed in all eukaryotic cells. When polymerized, it forms long filaments of fibrillar actin, or F-actin, which are involved in the formation of the cytoskeleton, in muscle contraction and its regulation, and in many other processes. The dynamic and mechanical properties of actin are important for interaction with other proteins and the realization of its numerous functions in the cell. We performed 204.8 ns long molecular dynamics (MD) simulations of an actin filament segment consisting of 24 monomers in the absence and the presence of MgADP at 300 K in the presence of a solvent and at physiological ionic strength using the AMBER99SBILDN and CHARMM36 force fields in the GROMACS software environment, using modern structural models as the initial structure obtained by high-resolution cryoelectron microscopy. MD calculations have shown that the stationary regime of fluctuations in the structure of the F-actin long segment is developed 80–100 ns after the start of the MD trajectory. Based on the results of MD calculations, the main parameters of the actin helix and its bending, longitudinal, and torsional stiffness were estimated using a section of the calculation model that is far enough away from its ends. The estimated subunit axial (2.72–2.75 nm) and angular (165–168◦) translation of the F-actin helix, its bending (2.8–4.7 · 10−26 N·m2), longitudinal (36–47·10−9 N), and torsional (2.6–3.1·10−26 N·m2) stiffness are in good agreement with the results of the most reliable experiments. The results of MD calculations have shown that modern structural models of F-actin make it possible to accurately describe its dynamics and mechanical properties, provided that computational models contain a sufficiently large number of monomers, modern force fields, and relatively long MD trajectories are used. The inclusion of actin partner proteins, in particular, tropomyosin and troponin, in the MD model can help to understand the molecular mechanisms of such important processes as the regulation of muscle contraction.
-
Molecular model of OCP-phycobilisome complex formation
Computer Research and Modeling, 2014, v. 6, no. 5, pp. 761-774A molecular model of phicobilisome complex with a quenching protein OCP which regulates the energy transfer from phicobilisome to photosystem in photosynthetic apparatus of cyanobacteria has been developed. In the model obtained a well known spatial structure of interacting proteins remains intact and also the energy transfer from phycobilisome to OCP with reasonable rates is possible. Free energy of complex formation was calculated using MM–PBSA approach. By the order of magnitude this energy is about tens of kJ/mole. This value correlates well with experimental observed low stability of this complex. The specific surface energy of interaction between hydrophylic phicobilisome and OCP is twice larger than specific surface energy of their interaction with water. This reflects a high molecular complementary of interacting protein surfaces and is a strong pro argument for proposed model.
-
Repressilator with time-delayed gene expression. Part II. Stochastic description
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 587-609The repressilator is the first genetic regulatory network in synthetic biology, which was artificially constructed in 2000. It is a closed network of three genetic elements $lacI$, $\lambda cI$ and $tetR$, which have a natural origin, but are not found in nature in such a combination. The promoter of each of the three genes controls the next cistron via the negative feedback, suppressing the expression of the neighboring gene. In our previous paper [Bratsun et al., 2018], we proposed a mathematical model of a delayed repressillator and studied its properties within the framework of a deterministic description. We assume that delay can be both natural, i.e. arises during the transcription / translation of genes due to the multistage nature of these processes, and artificial, i.e. specially to be introduced into the work of the regulatory network using gene engineering technologies. In this work, we apply the stochastic description of dynamic processes in a delayed repressilator, which is an important addition to deterministic analysis due to the small number of molecules involved in gene regulation. The stochastic study is carried out numerically using the Gillespie algorithm, which is modified for time delay systems. We present the description of the algorithm, its software implementation, and the results of benchmark simulations for a onegene delayed autorepressor. When studying the behavior of a repressilator, we show that a stochastic description in a number of cases gives new information about the behavior of a system, which does not reduce to deterministic dynamics even when averaged over a large number of realizations. We show that in the subcritical range of parameters, where deterministic analysis predicts the absolute stability of the system, quasi-regular oscillations may be excited due to the nonlinear interaction of noise and delay. Earlier, we have discovered within the framework of the deterministic description, that there exists a long-lived transient regime, which is represented in the phase space by a slow manifold. This mode reflects the process of long-term synchronization of protein pulsations in the work of the repressilator genes. In this work, we show that the transition to the cooperative mode of gene operation occurs a two order of magnitude faster, when the effect of the intrinsic noise is taken into account. We have obtained the probability distribution of moment when the phase trajectory leaves the slow manifold and have determined the most probable time for such a transition. The influence of the intrinsic noise of chemical reactions on the dynamic properties of the repressilator is discussed.
-
Exciton interaction of the chromophores — a tool to fine-tune the mechanism of non-photochemical quenching of phycobilisome in cyanobacteria
Computer Research and Modeling, 2015, v. 7, no. 1, pp. 125-144Views (last year): 2. Citations: 2 (RSCI).It was carried out a theoretical analysis of the energy migration rate in the process of non-photochemical quenching of fluorescence pigment-protein complex that performed by means of orange carotenoid-protein in the phycobilisomes of cyanobacteria. It is shown that the observed rate of energy transfer can not be interpreted in the framework of inductive-resonant mechanism of energy migration (Förster’s theory). On the contrary, according to the calculations the implementation of the exciton mechanism is fully consistent with the experimentally observed high quenching rate. An essential feature of the implementation of the exciton mechanism is to comply with a number of structural and functional conditions that require fine-tuning of the molecular system in the interaction of donor and acceptor molecules both each other and with the local molecular environment.
-
Stress-induced duplex destabilization (SIDD) profiles for T7 bacteriophage promoters
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 867-878Views (last year): 18.The functioning of DNA regulatory regions rely primarily on their physicochemical and structural properties but not on nucleotide sequences, i.e. ‘genetic text’. The formers are responsible for coding of DNA-protein interactions that govern various regulatory events. One of the characteristics is SIDD (Stress-Induced Duplex Destabilization) that quantify DNA duplex region propensity to melt under the imposed superhelical stress. The duplex property has been shown to participate in activity of various regulatory regions. Here we employ the SIDD model to calculate melting probability profiles for T7 bacteriophage promoter sequences. The genome is characterized by small size (approximately 40 thousand nucleotides) and temporal organization of expression: at the first stage of infection early T7 DNA region is transcribed by the host cell RNA polymerase, later on in life cycle phage-specific RNA polymerase performs transcription of class II and class III genes regions. Differential recognition of a particular group of promoters by the enzyme cannot be solely explained by their nucleotide sequences, because of, among other reasons, it is fairly similar among most the promoters. At the same time SIDD profiles obtained vary significantly and are clearly separated into groups corresponding to functional promoter classes of T7 DNA. For example, early promoters are affected by the same maximally destabilized DNA duplex region located at the varying region of a particular promoter. class II promoters lack substantially destabilized regions close to transcription start sites. Class III promoters, in contrast, demonstrate characteristic melting probability maxima located in the near-downstream region in all cases. Therefore, the apparent differences among the promoter groups with exceptional textual similarity (class II and class III differ by only few singular substitutions) were established. This confirms the major impact of DNA primary structure on the duplex parameter as well as a need for a broad genetic context consideration. The differences in melting probability profiles obtained using SIDD model alongside with other DNA physicochemical properties appears to be involved in differential promoter recognition by RNA polymerases.
-
Ensemble building and statistical mechanics methods for MHC-peptide binding prediction
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1383-1395The proteins of the Major Histocompatibility Complex (MHC) play a key role in the functioning of the adaptive immune system, and the identification of peptides that bind to them is an important step in the development of vaccines and understanding the mechanisms of autoimmune diseases. Today, there are a number of methods for predicting the binding of a particular MHC allele to a peptide. One of the best such methods is NetMHCpan-4.0, which is based on an ensemble of artificial neural networks. This paper presents a methodology for qualitatively improving the underlying neural network underlying NetMHCpan-4.0. The proposed method uses the ensemble construction technique and adds as input an estimate of the Potts model taken from static mechanics, which is a generalization of the Ising model. In the general case, the model reflects the interaction of spins in the crystal lattice. Within the framework of the proposed method, the model is used to better represent the physical nature of the interaction of proteins included in the complex. To assess the interaction of the MHC + peptide complex, we use a two-dimensional Potts model with 20 states (corresponding to basic amino acids). Solving the inverse problem using data on experimentally confirmed interacting pairs, we obtain the values of the parameters of the Potts model, which we then use to evaluate a new pair of MHC + peptide, and supplement this value with the input data of the neural network. This approach, combined with the ensemble construction technique, allows for improved prediction accuracy, in terms of the positive predictive value (PPV) metric, compared to the baseline model.
-
Kinetic model of DNA double-strand break repair in primary human fibroblasts exposed to low-LET irradiation with various dose rates
Computer Research and Modeling, 2015, v. 7, no. 1, pp. 159-176Views (last year): 4. Citations: 3 (RSCI).Here we demonstrate the results of kinetic modeilng of DNA double-strand breaks induction and repair and phosphorilated histone H2AX ($\gamma$-H2AX) and Rad51 foci formation in primary human fibroblasts exposed to low-LET ionizing radiation (IR). The model describes two major paths of DNA double-strand breaks repair: non-homologous end joining (NHEJ) and homologous recombination (HR) and considers interactions between DNA and several repair proteins (DNA-PKcs, ATM, Ku70/80, XRCC1, XRCC4, Rad51, RPA, etc.) using mass action equations and Michaelis–Menten kinetics. Experimental data on DNA rejoining kinetics and $\gamma$-H2AX and Rad51 foci formation in vicinity of double strand breaks in primary human fibroblasts exposed to low-LET IR with various dose rates and exposure times was utilized for training and statistical validation of the model.
-
Analysis of Brownian and molecular dynamics trajectories of to reveal the mechanisms of protein-protein interactions
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 723-738The paper proposes a set of fairly simple analysis algorithms that can be used to analyze a wide range of protein-protein interactions. In this work, we jointly use the methods of Brownian and molecular dynamics to describe the process of formation of a complex of plastocyanin and cytochrome f proteins in higher plants. In the diffusion-collision complex, two clusters of structures were revealed, the transition between which is possible with the preservation of the position of the center of mass of the molecules and is accompanied only by a rotation of plastocyanin by 134 degrees. The first and second clusters of structures of collisional complexes differ in that in the first cluster with a positively charged region near the small domain of cytochrome f, only the “lower” plastocyanin region contacts, while in the second cluster, both negatively charged regions. The “upper” negatively charged region of plastocyanin in the first cluster is in contact with the amino acid residue of lysine K122. When the final complex is formed, the plastocyanin molecule rotates by 69 degrees around an axis passing through both areas of electrostatic contact. With this rotation, water is displaced from the regions located near the cofactors of the molecules and formed by hydrophobic amino acid residues. This leads to the appearance of hydrophobic contacts, a decrease in the distance between the cofactors to a distance of less than 1.5 nm, and further stabilization of the complex in a position suitable for electron transfer. Characteristics such as contact matrices, rotation axes during the transition between states, and graphs of changes in the number of contacts during the modeling process make it possible to determine the key amino acid residues involved in the formation of the complex and to reveal the physicochemical mechanisms underlying this process.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"