All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Wavelet transform with the Morlet wavelet: Calculation methods based on a solution of diffusion equations
Computer Research and Modeling, 2009, v. 1, no. 1, pp. 5-12Views (last year): 5. Citations: 3 (RSCI).Two algorithms of evaluation of the continuous wavelet transform with the Morlet wavelet are presented. The first one is the solution of PDE with transformed signal, which plays a role of the initial value. The second allows to explore the influence of central frequency variation via the diffusion smoothing of the data modulated by the harmonic functions. These approaches are illustrated by the analysis of the chaotic oscillations of the coupled Roessler systems.
-
Conditions of Rice statistical model applicability and estimation of the Rician signal’s parameters by maximum likelihood technique
Computer Research and Modeling, 2014, v. 6, no. 1, pp. 13-25Views (last year): 2. Citations: 4 (RSCI).The paper develops a theory of a new so-called two-parametric approach to the random signals' analysis and processing. A mathematical simulation and the task solutions’ comparison have been implemented for the Gauss and Rice statistical models. The applicability of the Rice statistical model is substantiated for the tasks of data and images processing when the signal’s envelope is being analyzed. A technique is developed and theoretically substantiated for solving the task of the noise suppression and initial image reconstruction by means of joint calculation of both statistical parameters — an initial signal’s mean value and noise dispersion — based on the maximum likelihood method within the Rice distribution. The peculiarities of this distribution’s likelihood function and the following from them possibilities of the signal and noise estimation have been analyzed.
-
Stable character of the Rice statistical distribution: the theory and application in the tasks of the signals’ phase shift measuring
Computer Research and Modeling, 2020, v. 12, no. 3, pp. 475-485The paper concerns the study of the Rice statistical distribution’s peculiarities which cause the possibility of its efficient application in solving the tasks of high precision phase measuring in optics. The strict mathematical proof of the Rician distribution’s stable character is provided in the example of the differential signal consideration, namely: it has been proved that the sum or the difference of two Rician signals also obey the Rice distribution. Besides, the formulas have been obtained for the parameters of the resulting summand or differential signal’s Rice distribution. Based upon the proved stable character of the Rice distribution a new original technique of the high precision measuring of the two quasi-harmonic signals’ phase shift has been elaborated in the paper. This technique is grounded in the statistical analysis of the measured sampled data for the amplitudes of the both signals and for the amplitude of the third signal which is equal to the difference of the two signals to be compared in phase. The sought-for phase shift of two quasi-harmonic signals is being calculated from the geometrical considerations as an angle of a triangle which sides are equal to the three indicated signals’ amplitude values having been reconstructed against the noise background. Thereby, the proposed technique of measuring the phase shift using the differential signal analysis, is based upon the amplitude measurements only, what significantly decreases the demands to the equipment and simplifies the technique implementation in practice. The paper provides both the strict mathematical substantiation of a new phase shift measuring technique and the results of its numerical testing. The elaborated method of high precision phase measurements may be efficiently applied for solving a wide circle of tasks in various areas of science and technology, in particular — at distance measuring, in communication systems, in navigation, etc.
-
Theoretical substantiation of the mathematical techniques for joint signal and noise estimation at rician data analysis
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 445-473Views (last year): 2. Citations: 2 (RSCI).The paper provides a solution of the two-parameter task of joint signal and noise estimation at data analysis within the conditions of the Rice distribution by the techniques of mathematical statistics: the maximum likelihood method and the variants of the method of moments. The considered variants of the method of moments include the following techniques: the joint signal and noise estimation on the basis of measuring the 2-nd and the 4-th moments (MM24) and on the basis of measuring the 1-st and the 2-nd moments (MM12). For each of the elaborated methods the explicit equations’ systems have been obtained for required parameters of the signal and noise. An important mathematical result of the investigation consists in the fact that the solution of the system of two nonlinear equations with two variables — the sought for signal and noise parameters — has been reduced to the solution of just one equation with one unknown quantity what is important from the view point of both the theoretical investigation of the proposed technique and its practical application, providing the possibility of essential decreasing the calculating resources required for the technique’s realization. The implemented theoretical analysis has resulted in an important practical conclusion: solving the two-parameter task does not lead to the increase of required numerical resources if compared with the one-parameter approximation. The task is meaningful for the purposes of the rician data processing, in particular — the image processing in the systems of magnetic-resonance visualization. The theoretical conclusions have been confirmed by the results of the numerical experiment.
-
Statistical distribution of the quasi-harmonic signal’s phase: basics of theory and computer simulation
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 287-297The paper presents the results of the fundamental research directed on the theoretical study and computer simulation of peculiarities of the quasi-harmonic signal’s phase statistical distribution. The quasi-harmonic signal is known to be formed as a result of the Gaussian noise impact on the initially harmonic signal. By means of the mathematical analysis the formulas have been obtained in explicit form for the principle characteristics of this distribution, namely: for the cumulative distribution function, the probability density function, the likelihood function. As a result of the conducted computer simulation the dependencies of these functions on the phase distribution parameters have been analyzed. The paper elaborates the methods of estimating the phase distribution parameters which contain the information about the initial, undistorted signal. It has been substantiated that the task of estimating the initial value of the phase of quasi-harmonic signal can be efficiently solved by averaging the results of the sampled measurements. As for solving the task of estimating the second parameter of the phase distribution, namely — the parameter, determining the signal level respectively the noise level — a maximum likelihood technique is proposed to be applied. The graphical illustrations are presented that have been obtained by means of the computer simulation of the principle characteristics of the phase distribution under the study. The existence and uniqueness of the likelihood function’s maximum allow substantiating the possibility and the efficiency of solving the task of estimating signal’s level relative to noise level by means of the maximum likelihood technique. The elaborated method of estimating the un-noised signal’s level relative to noise, i. e. the parameter characterizing the signal’s intensity on the basis of measurements of the signal’s phase is an original and principally new technique which opens perspectives of usage of the phase measurements as a tool of the stochastic data analysis. The presented investigation is meaningful for solving the task of determining the phase and the signal’s level by means of the statistical processing of the sampled phase measurements. The proposed methods of the estimation of the phase distribution’s parameters can be used at solving various scientific and technological tasks, in particular, in such areas as radio-physics, optics, radiolocation, radio-navigation, metrology.
-
Review of MRI processing techniques and elaboration of a new two-parametric method of moments
Computer Research and Modeling, 2014, v. 6, no. 2, pp. 231-244Citations: 10 (RSCI).The paper provides a review of the existing methods of signals’ processing within the conditions of the Rice statistical model applicability. There are considered the principle development directions, the existing limitations and the improvement possibilities concerning the methods of solving the tasks of noise suppression and analyzed signals’ filtration by the example of magnetic-resonance visualization. A conception of a new approach to joint calculation of Rician signal’s both parameters has been developed based on the method of moments in two variants of its implementation. The computer simulation and the comparative analysis of the obtained numerical results have been conducted.
-
Signal and noise parameters’ determination at rician data analysis by method of moments of lower odd orders
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 717-728Views (last year): 10. Citations: 1 (RSCI).The paper develops a new mathematical method of the joint signal and noise parameters determination at the Rice statistical distribution by method of moments based upon the analysis of data for the 1-st and the 3-rd raw moments of the random rician value. The explicit equations’ system have been obtained for required parameters of the signal and noise. In the limiting case of the small value of the signal-to-noise ratio the analytical formulas have been derived that allow calculating the required parameters without the necessity of solving the equations numerically. The technique having been elaborated in the paper ensures an efficient separation of the informative and noise components of the data to be analyzed without any a-priori restrictions, just based upon the processing of the results of the signal’s sampled measurements. The task is meaningful for the purposes of the rician data processing, in particular in the systems of magnetic-resonance visualization, in ultrasound visualization systems, at the optical signals’ analysis in range measuring systems, in radio location, etc. The results of the investigation have shown that the two parameter task solution of the proposed technique does not lead to the increase in demanded volume of computing resources compared with the one parameter task being solved in approximation that the second parameter of the task is known a-priori There are provided the results of the elaborated technique’s computer simulation. The results of the signal and noise parameters’ numerical calculation have confirmed the efficiency of the elaborated technique. There has been conducted the comparison of the accuracy of the sought-for parameters estimation by the technique having been developed in this paper and by the previously elaborated method of moments based upon processing the measured data for lower even moments of the signal to be analyzed.
-
Relation between performance of organization and its structure during sudden and smoldering crises
Computer Research and Modeling, 2016, v. 8, no. 4, pp. 685-706Views (last year): 2. Citations: 2 (RSCI).The article describes a mathematical model that simulates performance of a hierarchical organization during an early stage of a crisis. A distinguished feature of this stage of crisis is presence of so called early warning signals containing information on the approaching event. Employees are capable of catching the early warnings and of preparing the organization for the crisis based on the signals’ meaning. The efficiency of the preparation depends on both parameters of the organization and parameters of the crisis. The proposed simulation agentbased model is implemented on Java programming language and is used for conducting experiments via Monte- Carlo method. The goal of the experiments is to compare how centralized and decentralized organizational structures perform during sudden and smoldering crises. By centralized organizations we assume structures with high number of hierarchy levels and low number of direct reports of every manager, while decentralized organizations mean structures with low number of hierarchy levels and high number of direct reports of every manager. Sudden crises are distinguished by short early stage and low number of warning signals, while smoldering crises are defined as crises with long lasting early stage and high number of warning signals not necessary containing important information. Efficiency of the organizational performance during early stage of a crisis is measured by two parameters: percentage of early warnings which have been acted upon in order to prepare organization for the crisis, and time spent by top-manager on working with early warnings. As a result, we show that during early stage of smoldering crises centralized organizations process signals more efficiently than decentralized organizations, while decentralized organizations handle early warning signals more efficiently during early stage of sudden crises. However, occupation of top-managers during sudden crises is higher in decentralized organizations and it is higher in centralized organizations during smoldering crises. Thus, neither of the two classes of organizational structures is more efficient by the two parameters simultaneously. Finally, we conduct sensitivity analysis to verify the obtained results.
-
Synchronous components of financial time series
Computer Research and Modeling, 2017, v. 9, no. 4, pp. 639-655The article proposes a method of joint analysis of multidimensional financial time series based on the evaluation of the set of properties of stock quotes in a sliding time window and the subsequent averaging of property values for all analyzed companies. The main purpose of the analysis is to construct measures of joint behavior of time series reacting to the occurrence of a synchronous or coherent component. The coherence of the behavior of the characteristics of a complex system is an important feature that makes it possible to evaluate the approach of the system to sharp changes in its state. The basis for the search for precursors of sharp changes is the general idea of increasing the correlation of random fluctuations of the system parameters as it approaches the critical state. The increments in time series of stock values have a pronounced chaotic character and have a large amplitude of individual noises, against which a weak common signal can be detected only on the basis of its correlation in different scalar components of a multidimensional time series. It is known that classical methods of analysis based on the use of correlations between neighboring samples are ineffective in the processing of financial time series, since from the point of view of the correlation theory of random processes, increments in the value of shares formally have all the attributes of white noise (in particular, the “flat spectrum” and “delta-shaped” autocorrelation function). In connection with this, it is proposed to go from analyzing the initial signals to examining the sequences of their nonlinear properties calculated in time fragments of small length. As such properties, the entropy of the wavelet coefficients is used in the decomposition into the Daubechies basis, the multifractal parameters and the autoregressive measure of signal nonstationarity. Measures of synchronous behavior of time series properties in a sliding time window are constructed using the principal component method, moduli values of all pairwise correlation coefficients, and a multiple spectral coherence measure that is a generalization of the quadratic coherence spectrum between two signals. The shares of 16 large Russian companies from the beginning of 2010 to the end of 2016 were studied. Using the proposed method, two synchronization time intervals of the Russian stock market were identified: from mid-December 2013 to mid- March 2014 and from mid-October 2014 to mid-January 2016.
Keywords: financial time series, wavelets, entropy, multi-fractals, predictability, synchronization.Views (last year): 12. Citations: 2 (RSCI). -
On one particular model of a mixture of the probability distributions in the radio measurements
Computer Research and Modeling, 2012, v. 4, no. 3, pp. 563-568Views (last year): 3. Citations: 7 (RSCI).This paper presents a model mixture of probability distributions of signal and noise. Typically, when analyzing the data under conditions of uncertainty it is necessary to use nonparametric tests. However, such an analysis of nonstationary data in the presence of uncertainty on the mean of the distribution and its parameters may be ineffective. The model involves the implementation of a case of a priori non-parametric uncertainty in the processing of the signal at a time when the separation of signal and noise are related to different general population, is feasible.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"