Результаты поиска по 'simulation':
Найдено статей: 333
  1. Babina O.I.
    Development of simulation optimization model for support of planning processes of warehouse systems
    Computer Research and Modeling, 2014, v. 6, no. 2, pp. 295-307

    In the article, the questions of application of a optimization method for support of planning processes in warehouse systems by means of simulation are considered. Mechanisms of interrelation of optimization and simulation models are investigated, and also the algorithm of simulation optimization model development of warehouse system for support of planning processes is described in detail.

    Views (last year): 2. Citations: 3 (RSCI).
  2. Priadein R.B., Stepantsov M.Y.
    On a possible approach to a sport game with continuous time simulation
    Computer Research and Modeling, 2014, v. 6, no. 3, pp. 455-460

    This paper is dedicated to discussing methods of statistical modeling the outcomes of sport events and, particularly, matches with continuous time. We propose a simulation-based approach to predicting the outcome of a match, somehow medium between pure statistical methods and agent simulation of individual players. An example of retrospective prediction is given.

    Views (last year): 3. Citations: 2 (RSCI).
  3. Aksenenko A.Yu., Korobova N.V., Dmitriev A.M.
    The analysis of various design methods for production of housing parts by combined extrusion
    Computer Research and Modeling, 2014, v. 6, no. 6, pp. 967-974

    The article contains review of various estimation methods of combined extrusion process for the representative part, also analytical calculations and numerical simulation of this process using program DEFORM 3D. The comparative analysis of the results obtained by different methods was made. The assumptions of the main factors having a significant effect on the reliability of the results were formulated.

    Views (last year): 3. Citations: 7 (RSCI).
  4. Zakharov P.V., Eremin A.M., Starostenkov M.D., Markidonov A.V.
    Computer simulation of nonlinear localized vibrational modes of large amplitude in the crystal Pt3Al with bivacancies Pt
    Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1089-1096

    By method of molecular dynamics investigated the interaction of nonlinear localized modes with bivacancies Pt crystal Pt3Al. Identified dependences of the lifetime of the nonlinear localized modes from the initial temperature of the crystal model, the initial atom Al deviation from its equilibrium position, as well as the distance to the introduced bivacancy Pt in (111) plane of the crystal.

    Views (last year): 4. Citations: 9 (RSCI).
  5. Zaika Y.V., Rodchenkova N.I., Sidorov N.I.
    Modeling of H2-permeability of alloys for gas separation membranes
    Computer Research and Modeling, 2016, v. 8, no. 1, pp. 121-135

    High-purity hydrogen is required for clean energy and a variety of chemical technology processes. A considerable part of hydrogen is to be obtained by methane conversion. Different alloys, which may be wellsuited for use in gas-separation plants, were investigated by measuring specific hydrogen permeability. One had to estimate the parameters of diffusion and sorption to numerically model the different scenarios and experimental conditions of the material usage (including extreme ones), and identify the limiting factors. This paper presents a nonlinear model of hydrogen permeability in accordance with the specifics of the experiment, the numerical method for solving the boundary-value problem, and the results of parametric identification for the alloy V85Ni15.

    Views (last year): 1. Citations: 7 (RSCI).
  6. Grabarnik P.Ya.
    Parameter estimation methods for random point fields with local interactions
    Computer Research and Modeling, 2016, v. 8, no. 2, pp. 323-332

    The paper gives an overview of methods for estimating the parameters of random point fields with local interaction between points. It is shown that the conventional method of the maximum pseudo-likelihood is a special case of the family of estimation methods based on the use of the auxiliary Markov process, invariant measure of which is the Gibbs point field with parameters to be estimated. A generalization of this method, resulting in estimating equation that can not be obtained by the the universal Takacs–Fiksel method, is proposed. It is shown by computer simulations that the new method enables to obtain estimates which have better quality than those by a widely used method of the maximum pseudolikelihood.

    Views (last year): 3.
  7. Aksenov A.A., Zhluktov S.V., Shmelev V.V., Shaporenko E.V., Shepelev S.F., Rogozhkin S.A., Krylov A.N.
    Numerical investigations of mixing non-isothermal streams of sodium coolant in T-branch
    Computer Research and Modeling, 2017, v. 9, no. 1, pp. 95-110

    Numerical investigation of mixing non-isothermal streams of sodium coolant in a T-branch is carried out in the FlowVision CFD software. This study is aimed at argumentation of applicability of different approaches to prediction of oscillating behavior of the flow in the mixing zone and simulation of temperature pulsations. The following approaches are considered: URANS (Unsteady Reynolds Averaged Navier Stokers), LES (Large Eddy Simulation) and quasi-DNS (Direct Numerical Simulation). One of the main tasks of the work is detection of the advantages and drawbacks of the aforementioned approaches.

    Numerical investigation of temperature pulsations, arising in the liquid and T-branch walls from the mixing of non-isothermal streams of sodium coolant was carried out within a mathematical model assuming that the flow is turbulent, the fluid density does not depend on pressure, and that heat exchange proceeds between the coolant and T-branch walls. Model LMS designed for modeling turbulent heat transfer was used in the calculations within URANS approach. The model allows calculation of the Prandtl number distribution over the computational domain.

    Preliminary study was dedicated to estimation of the influence of computational grid on the development of oscillating flow and character of temperature pulsation within the aforementioned approaches. The study resulted in formulation of criteria for grid generation for each approach.

    Then, calculations of three flow regimes have been carried out. The regimes differ by the ratios of the sodium mass flow rates and temperatures at the T-branch inlets. Each regime was calculated with use of the URANS, LES and quasi-DNS approaches.

    At the final stage of the work analytical comparison of numerical and experimental data was performed. Advantages and drawbacks of each approach to simulation of mixing non-isothermal streams of sodium coolant in the T-branch are revealed and formulated.

    It is shown that the URANS approach predicts the mean temperature distribution with a reasonable accuracy. It requires essentially less computational and time resources compared to the LES and DNS approaches. The drawback of this approach is that it does not reproduce pulsations of velocity, pressure and temperature.

    The LES and DNS approaches also predict the mean temperature with a reasonable accuracy. They provide oscillating solutions. The obtained amplitudes of the temperature pulsations exceed the experimental ones. The spectral power densities in the check points inside the sodium flow agree well with the experimental data. However, the expenses of the computational and time resources essentially exceed those for the URANS approach in the performed numerical experiments: 350 times for LES and 1500 times for ·DNS.

    Views (last year): 3.
  8. Yakushevich L.V.
    Electronic analogue of DNA
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 789-798

    It is known that the internal mobility of DNA molecules plays an important role in the functioning of these molecules. This explains the great interest of researchers in studying the internal dynamics of DNA. Complexity, laboriousness and high cost of research in this field stimulate the search and creation of simpler physical analogues, convenient for simulating the various dynamic regimes possible in DNA. One of the directions of such a search is connected with the use of a mechanical analogue of DNA — a chain of coupled pendulums. In this model, pendulums imitate nitrous bases, horizontal thread on which pendulums are suspended, simulates a sugarphosphate chain, and gravitational field simulates a field induced by a second strand of DNA. Simplicity and visibility are the main advantages of the mechanical analogue. However, the model becomes too cumbersome in cases where it is necessary to simulate long (more than a thousand base pairs) DNA sequences. Another direction is associated with the use of an electronic analogue of the DNA molecule, which has no shortcomings of the mechanical model. In this paper, we investigate the possibility of using the Josephson line as an electronic analogue. We calculated the coefficients of the direct and indirect transformations for the simple case of a homogeneous, synthetic DNA, the sequence of which contains only adenines. The internal mobility of the DNA molecule was modeled by the sine-Gordon equation for angular vibrations of nitrous bases belonging to one of the two polynucleotide chains of DNA. The second polynucleotide chain was modeled as a certain average field in which these oscillations occur. We obtained the transformation, allowing the transition from DNA to an electronic analog in two ways. The first includes two stages: (1) the transition from DNA to the mechanical analogue (a chain of coupled pendulums) and (2) the transition from the mechanical analogue to the electronic one (the Josephson line). The second way is direct. It includes only one stage — a direct transition from DNA to the electronic analogue.

    Views (last year): 9.
  9. Nikonov E.G., Pavlus M., Popovičová M.
    Molecular-dynamic simulation of water vapor interaction with suffering pores of the cylindrical type
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 493-501

    Theoretical and experimental investigations of water vapor interaction with porous materials are carried out both at the macro level and at the micro level. At the macro level, the influence of the arrangement structure of individual pores on the processes of water vapor interaction with porous material as a continuous medium is studied. At the micro level, it is very interesting to investigate the dependence of the characteristics of the water vapor interaction with porous media on the geometry and dimensions of the individual pore.

    In this paper, a study was carried out by means of mathematical modelling of the processes of water vapor interaction with suffering pore of the cylindrical type. The calculations were performed using a model of a hybrid type combining a molecular-dynamic and a macro-diffusion approach for describing water vapor interaction with an individual pore. The processes of evolution to the state of thermodynamic equilibrium of macroscopic characteristics of the system such as temperature, density, and pressure, depending on external conditions with respect to pore, were explored. The dependence of the evolution parameters on the distribution of the diffusion coefficient in the pore, obtained as a result of molecular dynamics modelling, is examined. The relevance of these studies is due to the fact that all methods and programs used for the modelling of the moisture and heat conductivity are based on the use of transport equations in a porous material as a continuous medium with known values of the transport coefficients, which are usually obtained experimentally.

    Views (last year): 9.
  10. Popov V.S., Popova A.A.
    Modeling of a channel wall interaction with an end seal flexibly restrained at the edge
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 387-400

    The paper proposes a new mathematical model to study the interaction dynamics of the longitudinal wall of a narrow channel with its end seal. The end seal was considered as the edge wall on a spring, i.e. spring-mass system. These walls interaction occurs via a viscous liquid filling the narrow channel; thus required the formulation and solution of the hydroelasticity problem. However, this problem has not been previously studied. The problem consists of the Navier–Stokes equations, the continuity equation, the edge wall dynamics equation, and the corresponding boundary conditions. Two cases of fluid motion in a narrow channel with parallel walls were studied. In the first case, we assumed the liquid motion as the creeping one, and in the second case as the laminar, taking into account the motion inertia. The hydroelasticty problem solution made it possible to determine the distribution laws of velocities and pressure in the liquid layer, as well as the motion law of the edge wall. It is shown that during creeping flow, the liquid physical properties and the channel geometric dimensions completely determine the damping in the considered oscillatory system. Both the end wall velocity and the longitudinal wall velocity affect the damping properties of the liquid layer. If the fluid motion inertia forces were taken into account, their influence on the edge wall vibrations was revealed, which manifested itself in the form of two added masses in the equation of its motion. The added masses and damping coefficients of the liquid layer due to the joint consideration of the liquid layer inertia and its viscosity were determined. The frequency and phase responses of the edge wall were constructed for the regime of steady-state harmonic oscillations. The simulation showed that taking into account the fluid layer inertia and its damping properties leads to a shift in the resonant frequencies to the low-frequency region and an increase in the oscillation amplitudes of the edge wall.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"