Результаты поиска по 'simulation modeling':
Найдено статей: 293
  1. Golov A.V., Simakov S.S.
    Mathematical model of respiratory regulation during hypoxia and hypercapnia
    Computer Research and Modeling, 2017, v. 9, no. 2, pp. 297-310

    Transport of respiratory gases by respiratory and circulatory systems is one of the most important processes associated with living conditions of the human body. Significant and/or long-term deviations of oxygen and carbon dioxide concentrations from the normal values in blood can be a reason of significant pathological changes with irreversible consequences: lack of oxygen (hypoxia and ischemic events), the change in the acidbase balance of blood (acidosis or alkalosis), and others. In the context of a changing external environment and internal conditions of the body the action of its regulatory systems aimed at maintaining homeostasis. One of the major mechanisms for maintaining concentrations (partial pressures) of oxygen and carbon dioxide in the blood at a normal level is the regulation of minute ventilation, respiratory rate and depth of respiration, which is caused by the activity of the central and peripheral regulators.

    In this paper we propose a mathematical model of the regulation of pulmonary ventilation parameter. The model is used to calculate the minute ventilation adaptation during hypoxia and hypercapnia. The model is developed using a single-component model of the lungs, and biochemical equilibrium conditions of oxygen and carbon dioxide in the blood and the alveolar lung volume. A comparison with laboratory data is performed during hypoxia and hypercapnia. Analysis of the results shows that the model reproduces the dynamics of minute ventilation during hypercapnia with sufficient accuracy. Another result is that more accurate model of regulation of minute ventilation during hypoxia should be developed. The factors preventing from satisfactory accuracy are analysed in the final section.

    Respiratory function is one of the main limiting factors of the organism during intense physical activities. Thus, it is important characteristic of high performance sport and extreme physical activity conditions. Therefore, the results of this study have significant application value in the field of mathematical modeling in sport. The considered conditions of hypoxia and hypercapnia are partly reproduce training at high altitude and at hypoxia conditions. The purpose of these conditions is to increase the level of hemoglobin in the blood of highly qualified athletes. These conditions are the only admitted by sport committees.

    Views (last year): 16.
  2. Krasnyakov I.V., Bratsun D.A., Pismen L.M.
    Mathematical modeling of carcinoma growth with a dynamic change in the phenotype of cells
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 879-902

    In this paper, we proposed a two-dimensional chemo-mechanical model of the growth of invasive carcinoma in epithelial tissue. Each cell is modeled by an elastic polygon, changing its shape and size under the influence of pressure forces acting from the tissue. The average size and shape of the cells have been calibrated on the basis of experimental data. The model allows to describe the dynamic deformations in epithelial tissue as a collective evolution of cells interacting through the exchange of mechanical and chemical signals. The general direction of tumor growth is controlled by a pre-established linear gradient of nutrient concentration. Growth and deformation of the tissue occurs due to the mechanisms of cell division and intercalation. We assume that carcinoma has a heterogeneous structure made up of cells of different phenotypes that perform various functions in the tumor. The main parameter that determines the phenotype of a cell is the degree of its adhesion to the adjacent cells. Three main phenotypes of cancer cells are distinguished: the epithelial (E) phenotype is represented by internal tumor cells, the mesenchymal (M) phenotype is represented by single cells and the intermediate phenotype is represented by the frontal tumor cells. We assume also that the phenotype of each cell under certain conditions can change dynamically due to epithelial-mesenchymal (EM) and inverse (ME) transitions. As for normal cells, we define the main E-phenotype, which is represented by ordinary cells with strong adhesion to each other. In addition, the normal cells that are adjacent to the tumor undergo a forced EM-transition and form an M-phenotype of healthy cells. Numerical simulations have shown that, depending on the values of the control parameters as well as a combination of possible phenotypes of healthy and cancer cells, the evolution of the tumor can result in a variety of cancer structures reflecting the self-organization of tumor cells of different phenotypes. We compare the structures obtained numerically with the morphological structures revealed in clinical studies of breast carcinoma: trabecular, solid, tubular, alveolar and discrete tumor structures with ameboid migration. The possible scenario of morphogenesis for each structure is discussed. We describe also the metastatic process during which a single cancer cell of ameboid phenotype moves due to intercalation in healthy epithelial tissue, then divides and undergoes a ME transition with the appearance of a secondary tumor.

    Views (last year): 46.
  3. Grinevich A.A., Yakushevich L.V.
    On the computer experiments of Kasman
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 503-513

    In 2007 Kasman conducted a series of original computer experiments with sine-Gordon kinks moving along artificial DNA sequences. Two sequences were considered. Each consisted of two parts separated by a boundary. The left part of the first sequence contained repeating TTA triplets that encode leucines, and the right part contained repeating CGC triplets that encode arginines. In the second sequence, the left part contained repeating CTG triplets encoding leucines, and the right part contained repeating AGA triplets encoding arginines. When modeling the kink movement, an interesting effect was discovered. It turned out that the kink, moving in one of the sequences, stopped without reaching the end of the sequence, and then “bounced off” as if he had hit a wall. At the same time, the kink movement in the other sequence did not stop during the entire time of the experiment. In these computer experiments, however, a simple DNA model proposed by Salerno was used. It takes into account differences in the interactions of complementary bases within pairs, but does not take into account differences in the moments of inertia of nitrogenous bases and in the distances between the centers of mass of the bases and the sugar-phosphate chain. The question of whether the Kasman effect will continue with the use of more accurate DNA models is still open. In this paper, we investigate the Kasman effect on the basis of a more accurate DNA model that takes both of these differences into account. We obtained the energy profiles of Kasman's sequences and constructed the trajectories of the motion of kinks launched in these sequences with different initial values of the energy. The results of our investigations confirmed the existence of the Kasman effect, but only in a limited interval of initial values of the kink energy and with a certain direction of the kinks movement. In other cases, this effect did not observe. We discussed which of the studied sequences were energetically preferable for the excitation and propagation of kinks.

    Views (last year): 23.
  4. Chernov I.A.
    High-throughput identification of hydride phase-change kinetics models
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 171-183

    Metal hydrides are an interesting class of chemical compounds that can reversibly bind a large amount of hydrogen and are, therefore, of interest for energy applications. Understanding the factors affecting the kinetics of hydride formation and decomposition is especially important. Features of the material, experimental setup and conditions affect the mathematical description of the processes, which can undergo significant changes during the processing of experimental data. The article proposes a general approach to numerical modeling of the formation and decomposition of metal hydrides and solving inverse problems of estimating material parameters from measurement data. The models are divided into two classes: diffusive ones, that take into account the gradient of hydrogen concentration in the metal lattice, and models with fast diffusion. The former are more complex and take the form of non-classical boundary value problems of parabolic type. A rather general approach to the grid solution of such problems is described. The second ones are solved relatively simply, but can change greatly when model assumptions change. Our experience in processing experimental data shows that a flexible software tool is needed; a tool that allows, on the one hand, building models from standard blocks, freely changing them if necessary, and, on the other hand, avoiding the implementation of routine algorithms. It also should be adapted for high-performance systems of different paradigms. These conditions are satisfied by the HIMICOS library presented in the paper, which has been tested on a large number of experimental data. It allows simulating the kinetics of formation and decomposition of metal hydrides, as well as related tasks, at three levels of abstraction. At the low level, the user defines the interface procedures, such as calculating the time layer based on the previous layer or the entire history, calculating the observed value and the independent variable from the task variables, comparing the curve with the reference. Special algorithms can be used for solving quite general parabolic-type boundary value problems with free boundaries and with various quasilinear (i.e., linear with respect to the derivative only) boundary conditions, as well as calculating the distance between the curves in different metric spaces and with different normalization. This is the middle level of abstraction. At the high level, it is enough to choose a ready tested model for a particular material and modify it in relation to the experimental conditions.

  5. Yakushevich L.V.
    From homogeneous to inhomogeneous electronic analogue of DNA
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1397-1407

    In this work, the problem of constructing an electronic analogue of heterogeneous DNA is solved with the help of the methods of mathematical modeling. Electronic analogs of that type, along with other physical models of living systems, are widely used as a tool for studying the dynamic and functional properties of these systems. The solution to the problem is based on an algorithm previously developed for homogeneous (synthetic) DNA and modified in such a way that it can be used for the case of inhomogeneous (native) DNA. The algorithm includes the following steps: selection of a model that simulates the internal mobility of DNA; construction of a transformation that allows you to move from the DNA model to its electronic analogue; search for conditions that provide an analogy of DNA equations and electronic analogue equations; calculation of the parameters of the equivalent electrical circuit. To describe inhomogeneous DNA, the model was chosen that is a system of discrete nonlinear differential equations simulating the angular deviations of nitrogenous bases, and Hamiltonian corresponding to these equations. The values of the coefficients in the model equations are completely determined by the dynamic parameters of the DNA molecule, including the moments of inertia of nitrous bases, the rigidity of the sugar-phosphate chain, and the constants characterizing the interactions between complementary bases in pairs. The inhomogeneous Josephson line was used as a basis for constructing an electronic model, the equivalent circuit of which contains four types of cells: A-, T-, G-, and C-cells. Each cell, in turn, consists of three elements: capacitance, inductance, and Josephson junction. It is important that the A-, T-, G- and C-cells of the Josephson line are arranged in a specific order, which is similar to the order of the nitrogenous bases (A, T, G and C) in the DNA sequence. The transition from DNA to an electronic analog was carried out with the help of the A-transformation which made it possible to calculate the values of the capacitance, inductance, and Josephson junction in the A-cells. The parameter values for the T-, G-, and C-cells of the equivalent electrical circuit were obtained from the conditions imposed on the coefficients of the model equations and providing an analogy between DNA and the electronic model.

  6. Naumov I.V., Otmakhova Y.S., Krasnykh S.S.
    Methodological approach to modeling and forecasting the impact of the spatial heterogeneity of the COVID-19 spread on the economic development of Russian regions
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 629-648

    The article deals with the development of a methodological approach to forecasting and modeling the socioeconomic consequences of viral epidemics in conditions of heterogeneous economic development of territorial systems. The relevance of the research stems from the need for rapid mechanisms of public management and stabilization of adverse epidemiological situation, taking into account the spatial heterogeneity of the spread of COVID-19, accompanied by a concentration of infection in large metropolitan areas and territories with high economic activity. The aim of the work is to substantiate a methodology to assess the spatial heterogeneity of the spread of coronavirus infection, find poles of its growth, emerging spatial clusters and zones of their influence with the assessment of inter-territorial relationships, as well as simulate the effects of worsening epidemiological situation on the dynamics of economic development of regional systems. The peculiarity of the developed approach is the spatial clustering of regional systems by the level of COVID-19 incidence, conducted using global and local spatial autocorrelation indices, various spatial weight matrices, and L.Anselin mutual influence matrix based on the statistical information of the Russian Federal State Statistics Service. The study revealed a spatial cluster characterized by high levels of infection with COVID-19 with a strong zone of influence and stable interregional relationships with surrounding regions, as well as formed growth poles which are potential poles of further spread of coronavirus infection. Regression analysis using panel data not only confirmed the impact of COVID-19 incidence on the average number of employees in enterprises, the level of average monthly nominal wages, but also allowed to form a model for scenario prediction of the consequences of the spread of coronavirus infection. The results of this study can be used to form mechanisms to contain the coronavirus infection and stabilize socio-economic at macroeconomic and regional level and restore the economy of territorial systems, depending on the depth of the spread of infection and the level of economic damage caused.

  7. Motorin A.A., Stupitsky E.L.
    Physical analysis and mathematical modeling of the parameters of explosion region produced in a rarefied ionosphere
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 817-833

    The paper presents a physical and numerical analysis of the dynamics and radiation of explosion products formed during the Russian-American experiment in the ionosphere using an explosive generator based on hexogen (RDX) and trinitrotoluene (TNT). The main attention is paid to the radiation of the perturbed region and the dynamics of the products of explosion (PE). The detailed chemical composition of the explosion products is analyzed and the initial concentrations of the most important molecules capable of emitting in the infrared range of the spectrum are determined, and their radiative constants are given. The initial temperature of the explosion products and the adiabatic exponent are determined. The nature of the interpenetration of atoms and molecules of a highly rarefied ionosphere into a spherically expanding cloud of products is analyzed. An approximate mathematical model of the dynamics of explosion products under conditions of mixing rarefied ionospheric air with them has been developed and the main thermodynamic characteristics of the system have been calculated. It is shown that for a time of 0,3–3 sec there is a significant increase in the temperature of the scattering mixture as a result of its deceleration. In the problem under consideration the explosion products and the background gas are separated by a contact boundary. To solve this two-region gas dynamic problem a numerical algorithm based on the Lagrangian approach was developed. It was necessary to fulfill special conditions at the contact boundary during its movement in a stationary gas. In this case there are certain difficulties in describing the parameters of the explosion products near the contact boundary which is associated with a large difference in the size of the mass cells of the explosion products and the background due to a density difference of 13 orders of magnitude. To reduce the calculation time of this problem an irregular calculation grid was used in the area of explosion products. Calculations were performed with different adiabatic exponents. The most important result is temperature. It is in good agreement with the results obtained by the method that approximately takes into account interpenetration. The time behavior of the IR emission coefficients of active molecules in a wide range of the spectrum is obtained. This behavior is qualitatively consistent with experiments for the IR glow of flying explosion products.

  8. Salenek I.A., Seliverstov Y.A., Seliverstov S.A., Sofronova E.A.
    Improving the quality of route generation in SUMO based on data from detectors using reinforcement learning
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 137-146

    This work provides a new approach for constructing high-precision routes based on data from transport detectors inside the SUMO traffic modeling package. Existing tools such as flowrouter and routeSampler have a number of disadvantages, such as the lack of interaction with the network in the process of building routes. Our rlRouter uses multi-agent reinforcement learning (MARL), where the agents are incoming lanes and the environment is the road network. By performing actions to launch vehicles, agents receive a reward for matching data from transport detectors. Parameter Sharing DQN with the LSTM backbone of the Q-function was used as an algorithm for multi-agent reinforcement learning.

    Since the rlRouter is trained inside the SUMO simulation, it can restore routes better by taking into account the interaction of vehicles within the network with each other and with the network infrastructure. We have modeled diverse traffic situations on three different junctions in order to compare the performance of SUMO’s routers with the rlRouter. We used Mean Absoluter Error (MAE) as the measure of the deviation from both cumulative detectors and routes data. The rlRouter achieved the highest compliance with the data from the detectors. We also found that by maximizing the reward for matching detectors, the resulting routes also get closer to the real ones. Despite the fact that the routes recovered using rlRouter are superior to the routes obtained using SUMO tools, they do not fully correspond to the real ones, due to the natural limitations of induction-loop detectors. To achieve more plausible routes, it is necessary to equip junctions with other types of transport counters, for example, camera detectors.

  9. Panteleev M.A., Bershadsky E.S., Shibeko A.M., Nechipurenko D.Y.
    Current issues in computational modeling of thrombosis, fibrinolysis, and thrombolysis
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 975-995

    Hemostasis system is one of the key body’s defense systems, which is presented in all the liquid tissues and especially important in blood. Hemostatic response is triggered as a result of the vessel injury. The interaction between specialized cells and humoral systems leads to the formation of the initial hemostatic clot, which stops bleeding. After that the slow process of clot dissolution occurs. The formation of hemostatic plug is a unique physiological process, because during several minutes the hemostatic system generates complex structures on a scale ranging from microns for microvessel injury or damaged endothelial cell-cell contacts, to centimeters for damaged systemic arteries. Hemostatic response depends on the numerous coordinated processes, which include platelet adhesion and aggregation, granule secretion, platelet shape change, modification of the chemical composition of the lipid bilayer, clot contraction, and formation of the fibrin mesh due to activation of blood coagulation cascade. Computer modeling is a powerful tool, which is used to study this complex system at different levels of organization. This includes study of intracellular signaling in platelets, modelling humoral systems of blood coagulation and fibrinolysis, and development of the multiscale models of thrombus growth. There are two key issues of the computer modeling in biology: absence of the adequate physico-mathematical description of the existing experimental data due to the complexity of the biological processes, and high computational complexity of the models, which doesn’t allow to use them to test physiologically relevant scenarios. Here we discuss some key unresolved problems in the field, as well as the current progress in experimental research of hemostasis and thrombosis. New findings lead to reevaluation of the existing concepts and development of the novel computer models. We focus on the arterial thrombosis, venous thrombosis, thrombosis in microcirculation and the problems of fibrinolysis and thrombolysis. We also briefly discuss basic types of the existing mathematical models, their computational complexity, and principal issues in simulation of thrombus growth in arteries.

  10. Korolev S.A., Maykov D.V.
    Identification of a mathematical model and research of the various modes of methanogenesis in mesophilic environments
    Computer Research and Modeling, 2012, v. 4, no. 1, pp. 131-141

    A mathematical model for the production of biogas from animal waste was developed. An algorithm for identification of model parameters was developed. The accuracy of model identification was performed. The result of simulation for batch and continuous modes of supply of substrate was shown. The optimum flow rate of the substrate for continuous operation was found.

    Views (last year): 10. Citations: 10 (RSCI).
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"