Результаты поиска по 'анализ текста':
Найдено статей: 21
  1. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 673-675
    Editor's note
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 673-675
    Views (last year): 1.
  2. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 689-692
    Editor's note
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 689-692
  3. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 5-8
    Editor's note
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 5-8
  4. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 259-261
    Editor's note
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 259-261
  5. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1261-1264
    Editor's note
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1261-1264
  6. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1097-1100
    Editor’s note
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1097-1100
  7. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 999-1002
    Editor’s note
    Computer Research and Modeling, 2022, v. 14, no. 5, pp. 999-1002
  8. Кочергин А.В., Холматова З.Ш.
    Извлечение персонажей и событий из повествований
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1593-1600

    Извлечение событий и персонажей из повествований является фундаментальной задачей при анализе и обработке текста на естественном языке. Методы извлечения событий применяются в самых разных областях — от обобщения различных документов до анализа медицинских записей. Мы определяли события на основе структуры под названием «четыре W» (кто, что, когда, где), чтобы охватить все основные компоненты событий, такие как действующие лица, действия, время и места. В этой статье мы рассмотрели два основных метода извлечения событий: статистический анализ синтаксических деревьев и семантическая маркировка ролей. Хотя эти методы были изучены разными исследователями по отдельности, мы напрямую сравнили эффективность двух подходов на собранном нами наборе данных, который мы разметили.

    Наш анализ показал, что статистический анализ синтаксических деревьев превосходит семантическую маркировку ролей при выделении событий и символов, особенно при определении конкретных деталей. Тем не менее, семантическая маркировка ролей продемонстрировала хорошую эффективность при правильной идентификации действующих лиц. Мы оценили эффективность обоих подходов, сравнив различные показатели, такие как точность, отзывчивость и F1-баллы, продемонстрировав, таким образом, их соответствующие преимущества и ограничения.

    Более того, в рамках нашей работы мы предложили различные варианты применения методов извлечения событий, которые мы планируем изучить в дальнейшем. Области, в которых мы хотим применить эти методы, включают анализ кода и установление авторства исходного кода. Мы рассматриваем возможность использования методов извлечения событий для определения ключевых элементов кода в виде назначений переменных и вызовов функций, что в дальнейшем может помочь ученым проанализировать поведение программ и определить участников проекта. Наша работа дает новое понимание эффективности статистического анализа и методов семантической маркировки ролей, предлагая исследователям новые направления для применения этих методов.

    Kochergin A.V., Kholmatova Z.Sh.
    Extraction of characters and events from narratives
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1593-1600

    Events and character extraction from narratives is a fundamental task in text analysis. The application of event extraction techniques ranges from the summarization of different documents to the analysis of medical notes. We identify events based on a framework named “four W” (Who, What, When, Where) to capture all the essential components like the actors, actions, time, and places. In this paper, we explore two prominent techniques for event extraction: statistical parsing of syntactic trees and semantic role labeling. While these techniques were investigated by different researchers in isolation, we directly compare the performance of the two approaches on our custom dataset, which we have annotated.

    Our analysis shows that statistical parsing of syntactic trees outperforms semantic role labeling in event and character extraction, especially in identifying specific details. Nevertheless, semantic role labeling demonstrate good performance in correct actor identification. We evaluate the effectiveness of both approaches by comparing different metrics like precision, recall, and F1-scores, thus, demonstrating their respective advantages and limitations.

    Moreover, as a part of our work, we propose different future applications of event extraction techniques that we plan to investigate. The areas where we want to apply these techniques include code analysis and source code authorship attribution. We consider using event extraction to retrieve key code elements as variable assignments and function calls, which can further help us to analyze the behavior of programs and identify the project’s contributors. Our work provides novel understandings of the performance and efficiency of statistical parsing and semantic role labeling techniques, offering researchers new directions for the application of these techniques.

  9. В данной статье исследуется эффективность применения технологии Retrieval-Augmented Generation (RAG) в сочетании с различными большими языковыми моделями (LLM) для поиска документов и получения информации в корпоративных информационных системах. Рассматриваются варианты использования LLM в корпоративных системах, архитектура RAG, характерные проблемы интеграции LLM в RAG-систему. Предлагается архитектура системы, включающая в себя векторный энкодер текстов и LLM. Энкодер используется для создания векторной базы данных, индексирующей библиотеку корпоративных документов. Запрос, передаваемый LLM, дополняется релевантным ему контекстом из библиотеки корпоративных документов, извлекаемым с использованием векторной базы данных и библиотеки FAISS. Большая языковая модель принимает запрос пользователя и формирует ответ на основе переданных в контексте запроса данных. Рассматриваются общая структура и алгоритм функционирования предлагаемого решения, реализующего архитектуру RAG. Обосновывается выбор LLM для исследования и проводится анализ результативности использования популярных LLM (ChatGPT, GigaChat, YandexGPT, Llama, Mistral, Qwen и др.) в качестве компонента для генерации ответов. На основе тестового набора вопросов методом экспертных оценок оцениваются точность, полнота, грамотность и лаконичность ответов, предоставляемых рассматриваемыми моделями. Анализируются характеристики отдельных моделей, полученные в результате исследования. Приводится информация о средней скорости отклика моделей. Отмечается существенное влияние объема доступной памяти графического адаптера на производительность локальных LLM. На основе интегрального показателя качества формируется общий рейтинг LLM. Полученные результаты подтверждают эффективность предложенной архитектуры RAG для поиска документов и получения информации в корпоративных информационных системах. Были определены возможные направления дальнейших исследований в этой области: дополнение контекста, передаваемого LLM, и переход к архитектуре на базе LLM-агентов. В заключении представлены рекомендации по выбору оптимальной конфигурации RAG и LLM для построения решений, обеспечивающих быстрый и точный доступ к информации в рамках корпоративных информационных систем.

    Antonov I.V., Bruttan I.V.
    Using RAG technology and large language models to search for documents and obtain information in corporate information systems
    Computer Research and Modeling, 2025, v. 17, no. 5, pp. 871-888

    This paper investigates the effectiveness of Retrieval-Augmented Generation (RAG) combined with various Large Language Models (LLMs) for document retrieval and information access in corporate information systems. We survey typical use-cases of LLMs in enterprise environments, outline the RAG architecture, and discuss the major challenges that arise when integrating LLMs into a RAG pipeline. A system architecture is proposed that couples a text-vector encoder with an LLM. The encoder builds a vector database that indexes a library of corporate documents. For every user query, relevant contextual fragments are retrieved from this library via the FAISS engine and appended to the prompt given to the LLM. The LLM then generates an answer grounded in the supplied context. The overall structure and workflow of the proposed RAG solution are described in detail. To justify the choice of the generative component, we benchmark a set of widely used LLMs — ChatGPT, GigaChat, YandexGPT, Llama, Mistral, Qwen, and others — when employed as the answer-generation module. Using an expert-annotated test set of queries, we evaluate the accuracy, completeness, linguistic quality, and conciseness of the responses. Model-specific characteristics and average response latencies are analysed; the study highlights the significant influence of available GPU memory on the throughput of local LLM deployments. An overall ranking of the models is derived from an aggregated quality metric. The results confirm that the proposed RAG architecture provides efficient document retrieval and information delivery in corporate environments. Future research directions include richer context augmentation techniques and a transition toward agent-based LLM architectures. The paper concludes with practical recommendations on selecting an optimal RAG–LLM configuration to ensure fast and precise access to enterprise knowledge assets.

  10. Чувилин К.В.
    Эффективный алгоритм сравнения документов в формате ${\mathrm{\LaTeX}}$
    Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 329-345

    Рассматривается задача построения различий, возникающих при редактировании документов в формате ${\mathrm{\LaTeX}}$. Каждый документ представляется в виде синтаксического дерева, узлы которого называются токенами. Строится минимально возможное текстовое представление документа, не меняющее синтаксическое дерево. Весь текст разбивается на фрагменты, границы которых соответствуют токенам. С помощью алгоритма Хиршберга строится отображение последовательности текстовых фрагментов изначального документа в аналогичную последовательность отредактированного документа, соответствующее минимальному редактирующему расстоянию. Строится отображение символов текстов, соответствующее отображению последовательностей текстовых фрагментов. В синтаксических деревьях выделяются токены такие, что символы соответствующих фрагментов текста при отображении либо все не меняются, либо все удаляются, либо все добавляются. Для деревьев, образованных остальными токенами, строится отображение с помощью алгоритма Zhang–Shasha.

    Chuvilin K.V.
    An efficient algorithm for ${\mathrm{\LaTeX}}$ documents comparing
    Computer Research and Modeling, 2015, v. 7, no. 2, pp. 329-345

    The problem is constructing the differences that arise on ${\mathrm{\LaTeX}}$ documents editing. Each document is represented as a parse tree whose nodes are called tokens. The smallest possible text representation of the document that does not change the syntax tree is constructed. All of the text is splitted into fragments whose boundaries correspond to tokens. A map of the initial text fragment sequence to the similar sequence of the edited document corresponding to the minimum distance is built with Hirschberg algorithm A map of text characters corresponding to the text fragment sequences map is cunstructed. Tokens, that chars are all deleted, or all inserted, or all not changed, are selected in the parse trees. The map for the trees formed with other tokens is built using Zhang–Shasha algorithm.

    Views (last year): 2. Citations: 2 (RSCI).
Pages: next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"