All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Предсказание производительности избранных типов циклов над одномерными массивами посредством анализа эмбеддингов промежуточных представлений
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 211-224Предложен метод отображения промежуточных представлений C-, C++-программ в пространство векторов (эмбеддингов) для оценки производительности программ на этапе компиляции, без необходимости исполнения. Использование эмбеддингов для данной цели позволяет не проводить сравнение графов исследуемых программ непосредственно, что вычислительно упрощает задачу сравнения программ. Метод основан на серии трансформаций исходного промежуточного представления (IR), таких как: инструментирование — добавление фиктивных инструкций в оптимизационном проходе компилятора в зависимости от разности смещений в текущей инструкции обращения к памяти относительно предыдущей, преобразование IR в многомерный вектор с помощью технологии IR2Vec с понижением размерности по алгоритму t-SNE (стохастическое вложение соседей с t-распределением). В качестве метрики производительности предлагается доля кэш-промахов 1-го уровня (D1 cache misses). Приводится эвристический критерий отличия программ с большей долей кэш-промахов от программ с меньшей долей по их образам. Также описан разработанный в ходе работы проход компилятора, генерирующий и добавляющий фиктивные инструкции IR согласно используемой модели памяти. Приведено описание разработанного программного комплекса, реализующего предложенный способ оценивания на базе компиляторной инфраструктуры LLVM. Проведен ряд вычислительных экспериментов на синтетических тестах из наборов программ с идентичными потоками управления, но различным порядком обращений к одномерному массиву, показано, что коэффициент корреляции между метрикой производительности и расстоянием до эмбеддинга худшей программы в наборе отрицателен вне зависимости от инициализации t-SNE, что позволяет сделать заключение о достоверности эвристического критерия. Также в статье рассмотрен способ генерации тестов. По результатам экспериментов, вариативность значений метрики производительности на исследуемых множествах предложена как метрика для улучшения генератора тестов.
Ключевые слова: математическое моделирование, компиляторы, промежуточные представления программ, эмбеддинги, анализ производительности, статический анализ.
Performance prediction for chosen types of loops over one-dimensional arrays with embedding-driven intermediate representations analysis
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 211-224The method for mapping of intermediate representations (IR) set of C, C++ programs to vector embedding space is considered to create an empirical estimation framework for static performance prediction using LLVM compiler infrastructure. The usage of embeddings makes programs easier to compare due to avoiding Control Flow Graphs (CFG) and Data Flow Graphs (DFG) direct comparison. This method is based on transformation series of the initial IR such as: instrumentation — injection of artificial instructions in an instrumentation compiler’s pass depending on load offset delta in the current instruction compared to the previous one, mapping of instrumented IR into multidimensional vector with IR2Vec and dimension reduction with t-SNE (t-distributed stochastic neighbor embedding) method. The D1 cache miss ratio measured with perf stat tool is considered as performance metric. A heuristic criterion of programs having more or less cache miss ratio is given. This criterion is based on embeddings of programs in 2D-space. The instrumentation compiler’s pass developed in this work is described: how it generates and injects artificial instructions into IR within the used memory model. The software pipeline that implements the performance estimation based on LLVM compiler infrastructure is given. Computational experiments are performed on synthetic tests which are the sets of programs with the same CFGs but with different sequences of offsets used when accessing the one-dimensional array of a given size. The correlation coefficient between performance metric and distance to the worst program’s embedding is measured and proved to be negative regardless of t-SNE initialization. This fact proves the heuristic criterion to be true. The process of such synthetic tests generation is also considered. Moreover, the variety of performance metric in programs set in such a test is proposed as a metric to be improved with exploration of more tests generators.
-
Математическое моделирование оптимального рынка конкурирующих товаров в условиях лага поставок
Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 431-450Предлагается нелинейная рестриктивная (подчиняющаяся ограничениям типа неравенств) динамическая математическая модель свободного рынка многих товаров в условиях лага поставок товаров на рынок и линейной зависимости вектора спроса от вектора цен. Ставится задача отыскания оптимальных с точки зрения прибыли продавца цен и поставок товаров на рынок. Показано, что максимальная суммарная прибыль продавца выражается непрерывной кусочногладкой функцией вектора объемов поставок с разрывом производных на границах зон товарного дефицита, затоваривания и динамического равновесия рынка по каждому из товаров. С использованием аппарата предикатных функций построен вычислительный алгоритм оптимизации поставок товаров на рынок.
Ключевые слова: математическое моделирование, рынок многих товаров, цена, спрос, предложение, лаг поставок, дискретное время, динамика, нелинейность, прибыль продавца, кусочная гладкость, алгоритм оптимизации.
Mathematical modeling of the optimal market of competing goods in conditions of deliveries lags
Computer Research and Modeling, 2012, v. 4, no. 2, pp. 431-450Views (last year): 1. Citations: 3 (RSCI).The nonlinear restrictive (with restrictions of the inequalities type) dynamic mathematical model of the committed competition vacant market of many goods in conditions of the goods deliveries time-lag and of the linear dependency of the demand vector from the prices vector is offered. The problem of finding of prices and deliveries of goods into the market which are optimal (from seller’s profit standpoint) is formulated. It is shown the seller’s total profit maximum is expressing by the continuous piecewise smooth function of vector of volumes of deliveries with breakup of the derivative on borders of zones of the goods deficit, of the overstocking and of the dynamic balance of demand and offer of each of goods. With use of the predicate functions technique the computing algorithm of optimization of the goods deliveries into the market is built.
-
Об адаптивных ускоренных методах и их модификациях для альтернированной минимизации
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 497-515В первой части работы получена оценка скорости сходимости ранее известного ускоренного метода первого порядка AGMsDR на классе задач минимизации, вообще говоря, невыпуклых функций с $M$-липшицевым градиентом и удовлетворяющих условию Поляка – Лоясиевича. При реализации метода не требуется знать параметр $\mu^{PL}>0$ из условия Поляка – Лоясиевича, при этом метод демонстрирует линейную скорость сходимости (сходимость со скоростью геометрической прогрессии со знаменателем $\left.\left(1 - \frac{\mu^{PL}}{M}\right)\right)$. Ранее для метода была доказана сходимость со скоростью $O\left(\frac1{k^2}\right)$ на классе выпуклых задач с $M$-липшицевым градиентом. А также сходимость со скоростью геометрической прогрессии, знаменатель которой $\left(1 - \sqrt{\frac{\mu^{SC}}{M}}\right)$, но только если алгоритму известно значение параметра сильной выпуклости $\mu^{SC}>0$. Новизна результата заключается в том, что удается отказаться от использования методом значения параметра $\mu^{SC}>0$ и при этом сохранить линейную скорость сходимости, но уже без корня в знаменателе прогрессии.
Во второй части представлена новая модификация метода AGMsDR для решения задач, допускающих альтернированную минимизацию (Alternating AGMsDR). Доказываются аналогичные оценки скорости сходимости на тех же классах оптимизационных задач.
Таким образом, представлены адаптивные ускоренные методы с оценкой сходимости $O\left(\min\left\lbrace\frac{M}{k^2},\,\left(1-{\frac{\mu^{PL}}{M}}\right)^{(k-1)}\right\rbrace\right)$ на классе выпуклых функций с $M$-липшицевым градиентом, которые удовлетворяют условию Поляка – Лоясиевича. При этом для работы метода не требуются значения параметров $M$ и $\mu^{PL}$. Если же условие Поляка – Лоясиевича не выполняется, то можно утверждать, что скорость сходимости равна $O\left(\frac1{k^2}\right)$, но при этом методы не требуют никаких изменений.
Также рассматривается адаптивная каталист-оболочка неускоренного градиентного метода, которая позволяет доказать оценку скорости сходимости $O\left(\frac1{k^2}\right)$. Проведено экспериментальное сравнение неускоренного градиентного метода с адаптивным выбором шага, ускоренного с помощью адаптивной каталист-оболочки с методами AGMsDR, Alternating AGMsDR, APDAGD (Adaptive Primal-Dual Accelerated Gradient Descent) и алгоритмом Синхорна для задачи, двойственной к задаче оптимального транспорта.
Проведенные вычислительные эксперименты показали более быструю работу метода Alternating AGMsDR по сравнению как с неускоренным градиентным методом, ускоренным с помощью адаптивной каталист-оболочки, так и с методом AGMsDR, несмотря на асимптотически одинаковые гарантии скорости сходимости $O\left(\frac1{k^2}\right)$. Это может быть объяснено результатом о линейной скорости сходимости метода Alternating AGMsDR на классе задач, удовлетворяющих условию Поляка – Лоясиевича. Гипотеза была проверена на квадратичных задачах. Метод Alternating AGMsDR показал более быструю сходимость по сравнению с методом AGMsDR.
Ключевые слова: выпуклая оптимизация, альтернированная минимизация, ускоренные методы, адаптивные методы, условие Поляка –Лоясиевича.
On accelerated adaptive methods and their modifications for alternating minimization
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 497-515In the first part of the paper we present convergence analysis of AGMsDR method on a new class of functions — in general non-convex with $M$-Lipschitz-continuous gradients that satisfy Polyak – Lojasiewicz condition. Method does not need the value of $\mu^{PL}>0$ in the condition and converges linearly with a scale factor $\left(1 - \frac{\mu^{PL}}{M}\right)$. It was previously proved that method converges as $O\left(\frac1{k^2}\right)$ if a function is convex and has $M$-Lipschitz-continuous gradient and converges linearly with a~scale factor $\left(1 - \sqrt{\frac{\mu^{SC}}{M}}\right)$ if the value of strong convexity parameter $\mu^{SC}>0$ is known. The novelty is that one can save linear convergence if $\frac{\mu^{PL}}{\mu^{SC}}$ is not known, but without square root in the scale factor.
The second part presents modification of AGMsDR method for solving problems that allow alternating minimization (Alternating AGMsDR). The similar results are proved.
As the result, we present adaptive accelerated methods that converge as $O\left(\min\left\lbrace\frac{M}{k^2},\,\left(1-{\frac{\mu^{PL}}{M}}\right)^{(k-1)}\right\rbrace\right)$ on a class of convex functions with $M$-Lipschitz-continuous gradient that satisfy Polyak – Lojasiewicz condition. Algorithms do not need values of $M$ and $\mu^{PL}$. If Polyak – Lojasiewicz condition does not hold, the convergence is $O\left(\frac1{k^2}\right)$, but no tuning needed.
We also consider the adaptive catalyst envelope of non-accelerated gradient methods. The envelope allows acceleration up to $O\left(\frac1{k^2}\right)$. We present numerical comparison of non-accelerated adaptive gradient descent which is accelerated using adaptive catalyst envelope with AGMsDR, Alternating AGMsDR, APDAGD (Adaptive Primal-Dual Accelerated Gradient Descent) and Sinkhorn's algorithm on the problem dual to the optimal transport problem.
Conducted experiments show faster convergence of alternating AGMsDR in comparison with described catalyst approach and AGMsDR, despite the same asymptotic rate $O\left(\frac1{k^2}\right)$. Such behavior can be explained by linear convergence of AGMsDR method and was tested on quadratic functions. Alternating AGMsDR demonstrated better performance in comparison with AGMsDR.
-
Решение распределенных вариационных неравенств с использованием смещенной компрессии, похожести данных и локальных обновлений
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1813-1827Вариационные неравенства представляют собой широкий класс задач, имеющих применение во множестве областей, включая теорию игр, экономику и машинное обучение. Однако, методы решения современных вариационных неравенств становятся все более вычислительно требовательными. Поэтому растет необходимость использовать распределенных подходов для решения таких задач за разумное время. В распределенной постановке вычислительным устройствам необходимо обмениваться данными друг с другом, что является узким местом. Существует три основных приема снижения стоимости и количества обменов данными: использование похожести локальных операторов, сжатие сообщений и применение локальных шагов на устройствах. Известен алгоритм, который использует эти три техники одновременно для решения распределенных вариационных неравенств и превосходит все остальные методы с точки зрения коммуникационных затрат. Однако этот метод работает только с так называемыми несмещенными операторами сжатия. Между тем использование смещенных операторов приводит к лучшим результатам на практике, но требует дополнительных модификаций алгоритма и больших усилий при доказательстве сходимости. В этой работе представляется новый алгоритм, который решает распределенные вариационные неравенства, используя похожесть локальных операторов, смещенное сжатие и локальные обновления на устройствах; выводится теоретическая сходимость такого алгоритма и проводятся эксперименты.
Communication-efficient solution of distributed variational inequalities using biased compression, data similarity and local updates
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1813-1827Variational inequalities constitute a broad class of problems with applications in a number of fields, including game theory, economics, and machine learning. Today’s practical applications of VIs are becoming increasingly computationally demanding. It is therefore necessary to employ distributed computations to solve such problems in a reasonable time. In this context, workers have to exchange data with each other, which creates a communication bottleneck. There are three main techniques to reduce the cost and the number of communications: the similarity of local operators, the compression of messages and the use of local steps on devices. There is an algorithm that uses all of these techniques to solve the VI problem and outperforms all previous methods in terms of communication complexity. However, this algorithm is limited to unbiased compression. Meanwhile, biased (contractive) compression leads to better results in practice, but it requires additional modifications within an algorithm and more effort to prove the convergence. In this work, we develop a new algorithm that solves distributed VI problems using data similarity, contractive compression and local steps on devices, derive the theoretical convergence of such an algorithm, and perform some experiments to show the applicability of the method.
-
Декомпозиция задачи моделирования некоторых объектов археологических исследований для работы в распределенной вычислительной среде
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 533-537В то время как каждая задача воссоздания артефактов уникальна, моделирование фасадов, фундаментов и конструктивных элементов строений может быть параметризовано. В работе рассмотрен комплекс существующих программных библиотек и решений, которые необходимо объединить в единую вычислительную систему для решения такой задачи. Представлен алгоритм генерации трехмерного заполнения реконструируемых объектов. Рассмотрена архитектура решения, необходимая для переноса системы в облачную среду.
Ключевые слова: сетевые распределенные вычисления, облачные вычисления, моделирование, реконструкция, сервисная архитектура.
Decomposition of the modeling task of some objects of archeological research for processing in a distributed computer system
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 533-537Views (last year): 1. Citations: 2 (RSCI).Although each task of recreating artifacts is truly unique, the modeling process for façades, foundations and building elements can be parametrized. This paper is focused on a complex of the existing programming libraries and solutions that need to be united into a single computer system to solve such a task. An algorithm of generating 3D filling of objects under reconstruction is presented. The solution architecture necessary for the system's adaptation for a cloud environment is studied.
-
Регуляризация и ускорение метода Гаусса – Ньютона
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1829-1840Предлагается семейство методов Гаусса – Ньютона для решения оптимизационных задачи систем нелинейных уравнений, основанное на идеях использования верхней оценки нормы невязки системы уравнений и квадратичной регуляризации. В работе представлено развитие схемы метода трех квадратов с добавлением моментного члена к правилу обновления искомых параметров в решаемой задаче. Получившаяся схема обладает несколькими замечательными свойствами. Во-первых, в работе алгоритмически описано целое параметрическое семейство методов, минимизирующих функционалы специального вида: композиции невязки нелинейного уравнения и унимодального функционала. Такой функционал, целиком согласующийся с парадигмой «серого ящика» в описании задачи, объединяет в себе большое количество решаемых задач, связанных с приложениями в машинном обучении, с задачами восстановления регрессионной зависимости. Во-вторых, полученное семейство методов описывается как обобщение нескольких форм алгоритма Левенберга – Марквардта, допускающих реализацию в том числе и в неевклидовых пространствах. В алгоритме, описывающем параметрическое семейство методов Гаусса – Ньютона, используется итеративная процедура, осуществляющая неточное параметризованное проксимальное отображение и сдвиг с помощью моментного члена. Работа содержит детальный анализ эффективности предложенного семейства методов Гаусса – Ньютона, выведенные оценки учитывают количество внешних итераций алгоритма решения основной задачи, точность и вычислительную сложность представления локальной модели и вычисления оракула. Для семейства методов выведены условия сублинейной и линейной сходимости, основанные на неравенстве Поляка – Лоясиевича. В обоих наблюдаемых режимах сходимости локально предполагается наличие свойства Липшица у невязки нелинейной системы уравнений. Кроме теоретического анализа схемы, в работе изучаются вопросы ее практической реализации. В частности, в проведенных экспериментах для субоптимального шага приводятся схемы эффективного вычисления аппроксимации наилучшего шага, что позволяет на практике улучшить сходимость метода по сравнению с оригинальным методом трех квадратов. Предложенная схема объединяет в себе несколько существующих и часто используемых на практике модификаций метода Гаусса – Ньютона, в добавок к этому в работе предложена монотонная моментная модификация семейства разработанных методов, не замедляющая поиск решения в худшем случае и демонстрирующая на практике улучшение сходимости метода.
Ключевые слова: системы нелинейных уравнений, невыпуклая оптимизация, метод Гаусса – Ньютона, условие Поляка – Лоясиевича, оценка сложности.
Regularization and acceleration of Gauss – Newton method
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1829-1840We propose a family of Gauss –Newton methods for solving optimization problems and systems of nonlinear equations based on the ideas of using the upper estimate of the norm of the residual of the system of nonlinear equations and quadratic regularization. The paper presents a development of the «Three Squares Method» scheme with the addition of a momentum term to the update rule of the sought parameters in the problem to be solved. The resulting scheme has several remarkable properties. First, the paper algorithmically describes a whole parametric family of methods that minimize functionals of a special kind: compositions of the residual of a nonlinear equation and an unimodal functional. Such a functional, entirely consistent with the «gray box» paradigm in the problem description, combines a large number of solvable problems related to applications in machine learning, with the regression problems. Secondly, the obtained family of methods is described as a generalization of several forms of the Levenberg –Marquardt algorithm, allowing implementation in non-Euclidean spaces as well. The algorithm describing the parametric family of Gauss –Newton methods uses an iterative procedure that performs an inexact parametrized proximal mapping and shift using a momentum term. The paper contains a detailed analysis of the efficiency of the proposed family of Gauss – Newton methods; the derived estimates take into account the number of external iterations of the algorithm for solving the main problem, the accuracy and computational complexity of the local model representation and oracle computation. Sublinear and linear convergence conditions based on the Polak – Lojasiewicz inequality are derived for the family of methods. In both observed convergence regimes, the Lipschitz property of the residual of the nonlinear system of equations is locally assumed. In addition to the theoretical analysis of the scheme, the paper studies the issues of its practical implementation. In particular, in the experiments conducted for the suboptimal step, the schemes of effective calculation of the approximation of the best step are given, which makes it possible to improve the convergence of the method in practice in comparison with the original «Three Square Method». The proposed scheme combines several existing and frequently used in practice modifications of the Gauss –Newton method, in addition, the paper proposes a monotone momentum modification of the family of developed methods, which does not slow down the search for a solution in the worst case and demonstrates in practice an improvement in the convergence of the method.
-
Предварительная декомпозиция задач дискретной оптимизации для ускорения алгоритма ветвей и границ в распределенной вычислительной среде
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 719-725В работе рассматриваются возможности реализации крупноблочных схем метода ветвей и границ для решения частично целочисленных задач линейного программирования. В качестве основы берется пакет оптимизации с открытым исходным кодом CBC. Анализируется возможность использования пакета для реализации крупноблочной схемы метода ветвей и границ. Система реализуется с использованием языка Erlang. Проводятся численные эксперименты на основе задачи о коммивояжере, показывающие заметное ускорение распределенной схемы решения задачи по сравнению с единичным однопоточным экземпляром пакета.
Ключевые слова: метод ветвей и границ, крупнозернистый параллелизм.
Pre-decomposition of discrete optimization problems to speed up the branch and bound method in a distributed computing environment
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 719-725The paper presents an implementation of branch and bound algorithm employing coarse grained parallelism. The system is based on CBC (COIN-OR branch and cut) open-source MIP solver and inter-process communication capabilities of Erlang. Numerical results show noticeable speedup in comparison to single-threaded CBC instance.
Keywords: branch and bound algorithm, coarse grained parallelism.Views (last year): 2. Citations: 2 (RSCI). -
Реализация и применение параллельного алгоритма глобального поиска минимума к задаче оптимизации параметров молекулярно-динамического потенциала ReaxFF
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 745-752Молекулярно-динамические методы, использующие силовое поле ReaxFF, позволяют получать достаточно хорошие результаты при моделировании больших многокомпонентных химически-реактивных систем. Здесь представлены алгоритм поиска оптимальных параметров силового поля ReaxFF для произвольных химических систем, а также его реализация. Метод основан на способе многомерного поиска глобального минимума, предложенном Р. Г. Стронгиным. Алгоритм хорошо масштабируемый и хорошо подходит для работы на параллельных вычислительных кластерах.
Ключевые слова: численное моделирование, молекулярная динамика, потенциал взаимодействия, химически-реактивные системы, реактивное силовое поле, оптимизация параметров, параллельный алгоритм, поиск глобального экстремума.
An implementation of a parallel global minimum search algorithm with an application to the ReaxFF molecular dynamic force field parameters optimization
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 745-752Views (last year): 1. Citations: 1 (RSCI).Molecular dynamic methods that use ReaxFF force field allow one to obtain sufficiently good results in simulating large multicomponent chemically reactive systems. Here is represented an algorithm of searching optimal parameters of molecular-dynamic force field ReaxFF for arbitrary chemical systems and its implementation. The method is based on the multidimensional technique of global minimum search suggested by R.G. Strongin. It has good scalability useful for running on distributed parallel computers.
-
Алгоритмическое построение явных численных схем и визуализация объектов и процессов в вычислительном эксперименте в гидромеханике
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 767-774В работе рассматриваются проектные и поверочные этапы, в разработке сложных вычислительных алгоритмов для создания прямых вычислительных экспериментов в гидромеханике. В моделировании физических полей и нестационарных процессов механики сплошных сред желательно опираться на строгие правила конструирования числовых объектов и связанных с ними вычислительных алгоритмов. Синтез адаптивных числовых объектов и эффективных арифметико-логических операций может послужить оптимизации всей вычислительной задачи, при условии строго следования и соблюдения исходных законов гидромеханики. Возможность использования троичной логики позволяет разрешить некоторые противоречия функционального и декларативного программирования в реализации чисто прикладных задач механики. Аналогичные проектные решения приводят к новым численным схемам тензорной математики, которые позволяют оптимизировать эффективность и обосновывать корректность результатов моделирования. Наиболее важным следствием является возможность использования интерактивных графических методов для визуализации промежуточных результатов моделирования, а также для управляемого воздействия на ход вычислительного эксперимента под контролем инженеров аэрогидромехаников–исследователей.
Ключевые слова: тензорная математика, метод крупных частиц, гидромеханика, вычислительный эксперимент, проектное решение, поверочная задача.
Algorithmic construction of explicit numerical schemes and visualization of objects and processes in the computational experiment in fluid mechanics
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 767-774Views (last year): 1.The paper discusses the design and verification stages in the development of complex numerical algorithms to create direct computational experiments in fluid mechanics. The modeling of physical fields and nonstationary processes of continuum mechanics, it is desirable to rely on strict rules of construction the numerical objects and related computational algorithms. Synthesis of adaptive the numerical objects and effective arithmetic- logic operations can serve to optimize the whole computing tasks, provided strict following and compliance with the original of the laws of fluid mechanics. The possibility of using ternary logic enables to resolve some contradictions of functional and declarative programming in the implementation of purely applied problems of mechanics. Similar design decisions lead to new numerical schemes tensor mathematics to help optimize effectiveness and validate correctness the simulation results. The most important consequence is the possibility of using interactive graphical techniques for the visualization of intermediate results of modeling, as well as managed to influence the course of computing experiment under the supervision of engineers aerohydrodynamics– researchers.
-
Естественные модели параллельных вычислений
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 781-785Курс «Естественные модели параллельных вычислений», читаемый студентам старших курсов факультета ВМК МГУ, посвящен рассмотрению вопросов суперкомпьютерной реализации естественных вычислительных моделей и является, по сути, введением в теорию естественных вычислений (natural computing) относительно нового раздела науки, образовавшегося на стыке математики, информатики и естественных наук (прежде всего биологии). Тематика естественных вычислений включает в себя как классические разделы, например клеточные автоматы, так и относительно новые, появившиеся в последние 10–20 лет, например методы роевого интеллекта. Несмотря на свое биологическое «происхождение», все эти модели находят широчайшее применение в областях, связанных с компьютерной обработкой данных. Исследования в области естественных вычислений также тесно связаны с вопросами и технологиями параллельных вычислений. Изложение теоретического материала курса сопровождается рассмотрением возможных схем распараллеливания вычислений, а в практической части курса предполагается выполнение студентами программной реализации рассматриваемых моделей с использованием технологии MPI и проведение численных экспериментов по исследованию эффективности выбранных схем распараллеливания вычислений.
Ключевые слова: естественные вычисления, эволюционные алгоритмы, искусственные биологические системы.
Natural models of parallel computations
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 781-785Views (last year): 17. Citations: 2 (RSCI).Course “Natural models of parallel computing”, given for senior students of the Faculty of Computational Mathematics and Cybernetics, Moscow State University, is devoted to the issues of supercomputer implementation of natural computational models and is, in fact, an introduction to the theory of natural computing, a relatively new branch of science, formed at the intersection of mathematics, computer science and natural sciences (especially biology). Topics of the natural computing include both already classic subjects such as cellular automata, and relatively new, introduced in the last 10–20 years, such as swarm intelligence. Despite its biological origin, all these models are widely applied in the fields related to computer data processing. Research in the field of natural computing is closely related to issues and technology of parallel computing. Presentation of theoretical material of the course is accompanied by a consideration of the possible schemes for parallel computing, in the practical part of the course it is supposed to perform by the students a software implementation using MPI technology and numerical experiments to investigate the effectiveness of the chosen schemes of parallel computing.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




