All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Новый подход к самообучению для обнаружения видов деревьев с использованием гиперспектральных и лидарных данных
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1747-1763Точное определение деревьев имеет решающее значение для экологического мониторинга, оценки биоразнообразия и управления лесными ресурсами. Традиционные методы ручного обследования трудоемки и неэффективны на больших территориях. Достижения в области дистанционного зондирования, включая лидар и гиперспектральную съемку, способствуют автоматизированному и точному обнаружению в различных областях.
Тем не менее, эти технологии обычно требуют больших объемов размеченных данных и ручной инженерии признаков, что ограничивает их масштабируемость. Данное исследование предлагает новый метод самообучения (Self-Supervised Learning, SSL) с использованием архитектуры SimCLR для улучшения классификации видов деревьев на основе неразмеченных данных. Модель SSL автоматически обнаруживает сильные признаки, объединяя спектральные данные гиперспектральной съемки со структурными данными лидара, исключая необходимость ручного вмешательства.
Мы оцениваем производительность модели SSL по сравнению с традиционными классификаторами, такими как Random Forest (RF), Support Vector Machines (SVM), а также методами обучения с учителем, используя набор данных конкурса ECODSE, который включает как размеченные, так и неразмеченные образцы видов деревьев на биологической станции Ordway-Swisher во Флориде. Метод SSL показал значительно более высокую эффективность по сравнению с традиционными методами, продемонстрировав точность 97,5% по сравнению с 95,56% для Semi-SSL и 95,03% для CNN при обучении с учителем.
Эксперименты по выборке показали, что техника SSL остается эффективной при меньшем количестве размеченных данных, и модель достигает хорошей точности даже при наличии всего 20% размеченных образцов. Этот вывод демонстрирует практическое применение SSL в условиях недостаточного объема размеченных данных, таких как мониторинг лесов в больших масштабах.
Ключевые слова: самообучение, обнаружение видов деревьев, SimCLR, гиперспектральные изображения, лидарные данные.
Tree species detection using hyperspectral and Lidar data: A novel self-supervised learning approach
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1747-1763Accurate tree identification is essential for ecological monitoring, biodiversity assessment, and forest management. Traditional manual survey methods are labor-intensive and ineffective over large areas. Advances in remote sensing technologies including lidar and hyperspectral imaging improve automated, exact detection in many fields.
Nevertheless, these technologies typically require extensive labeled data and manual feature engineering, which restrict scalability. This research proposes a new method of Self-Supervised Learning (SSL) with the SimCLR framework to enhance the classification of tree species using unlabelled data. SSL model automatically discovers strong features by merging the spectral data from hyperspectral data with the structural data from LiDAR, eliminating the need for manual intervention.
We evaluate the performance of the SSL model against traditional classifiers, including Random Forest (RF), Support Vector Machines (SVM), and Supervised Learning methods, using a dataset from the ECODSE competition, which comprises both labeled and unlabeled samples of tree species in Florida’s Ordway-Swisher Biological Station. The SSL method has been demonstrated to be significantly more effective than traditional methods, with a validation accuracy of 97.5% compared to 95.56% for Semi-SSL and 95.03% for CNN in Supervised Learning.
Subsampling experiments showed that the SSL technique is still effective with less labeled data, with the model achieving good accuracy even with only 20% labeled data points. This conclusion demonstrates SSL’s practical applications in circumstances with insufficient labeled data, such as large-scale forest monitoring.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




