All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Улично-дорожная сеть является основой инфраструктуры любой урбанистической территории. В данной статье сравниваются структурные характеристики (коэффициент сетчатости, коэффициент кластеризации) дорожных сетей центра Москвы (старая Москва), сформированных в результате самоорганизации, и сети дорог вблизи Ленинского проспекта (послевоенная Москва), которая формировалась в процессе централизованного планирования. Данные для построения дорожных сетей в виде первичных графов взяты из интернет-ресурса OpenStreetMap, позволяющего точно идентифицировать координаты перекрестков. По вычисленным характеристикам в зарубежных публикациях найдены города, дорожные сети которых имеют сходные с этими двумя районами Москвы структуры. С учетом двойственного представления дорожных сетей центров Москвы и Петербурга, изучались информационно-когнитивные свойства навигации по этим туристическим районам двух столиц. При построении двойственного графа исследуемых районов не принимались во внимание различия в типах дорог (одностороннее или двусторонне движение и т. п.). То есть построенные двойственные графы являются неориентированным. Поскольку дорожные сети в двойственном представлении описываются степенным законом распределения вершин по числу ребер (являются безмасштабными сетями), вычислены показатели степеней этих распределений. Показано, что информационная сложность двойственного графа центра Москвы превышает когнитивный порог в 8.1 бит, а этот же показатель для центра Петербурга ниже этого порога. Это объясняется тем, что дорожная сеть центра Петербурга создавалась на основе планирования и потому более проста для навигации. В заключение, с использованием методов статистической механики (метод расчета статистических сумм) для дорожных сетей некоторых российских городов, вычислялась энтропия Гиббса. Обнаружено, что с ростом размеров дорожных сетей их энтропия уменьшается. Обсуждаются задачи изучения эволюции сетей городской инфраструктуры различной природы (сети общественного транспорта, снабжения, коммуникации и т. д.), что позволит более глубоко исследовать и понять фундаментальные закономерности процесса урбанизации.
Ключевые слова: коэффициент сетчатости, загруженность сети, двойственное представление сети, энтропия сети.Views (last year): 3.Road network infrastructure is the basis of any urban area. This article compares the structural characteristics (meshedness coefficient, clustering coefficient) road networks of Moscow center (Old Moscow), formed as a result of self-organization and roads near Leninsky Prospekt (postwar Moscow), which was result of cetralized planning. Data for the construction of road networks in the form of graphs taken from the Internet resource OpenStreetMap, allowing to accurately identify the coordinates of the intersections. According to the characteristics of the calculated Moscow road networks areas the cities with road network which have a similar structure to the two Moscow areas was found in foreign publications. Using the dual representation of road networks of centers of Moscow and St. Petersburg, studied the information and cognitive features of navigation in these tourist areas of the two capitals. In the construction of the dual graph of the studied areas were not taken into account the different types of roads (unidirectional or bi-directional traffic, etc), that is built dual graphs are undirected. Since the road network in the dual representation are described by a power law distribution of vertices on the number of edges (scale-free networks), exponents of these distributions were calculated. It is shown that the information complexity of the dual graph of the center of Moscow exceeds the cognitive threshold 8.1 bits, and the same feature for the center of St. Petersburg below this threshold, because the center of St. Petersburg road network was created on the basis of planning and therefore more easy to navigate. In conclusion, using the methods of statistical mechanics (the method of calculating the partition functions) for the road network of some Russian cities the Gibbs entropy were calculated. It was found that with the road network size increasing their entropy decreases. We discuss the problem of studying the evolution of urban infrastructure networks of different nature (public transport, supply , communication networks, etc.), which allow us to more deeply explore and understand the fundamental laws of urbanization.
-
Математическая модель и эвристические методы организации распределенных вычислений в системах интернета вещей
Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 851-870В настоящее время интенсивное развитие получило направление в рамках теории распределенных вычислений, когда вычислительные задачи решаются распределенно коллективом ресурсно ограниченных устройств. На практике такой сценарий реализуется при обработке данных в системах интернета вещей, когда с целью снижения латентности систем и загруженности сетевой инфраструктуры данные обрабатываются на вычислительных устройствах края сети, в то время как стремительный рост и распространение систем интернета вещей ставят вопрос о необходимости разработки методов снижения ресурсоемкости производимых вычислений. Ресурсная ограниченность вычислительных устройств ставит следующие вопросы распределения вычислительных ресурсов: во-первых, необходимость учета ресурсной стоимости транзита данных между решаемыми на различных устройствах задачах, во-вторых, необходимость учета ресурсной стоимости непосредственно процесса распределения вычислительных ресурсов, что особенно актуально для групп автономных устройств (роботы различных типов, сенсорные сети и др.). Анализ современных публикаций, представленных в открытом доступе, продемонстрировал отсутствие предложенных моделей или методов распределения вычислительных ресурсов, которые бы совместно учитывали перечисленное, что делает создание новой математической модели организации распределенных вычислений в системах интернета вещей и методов ее решения актуальными.
В данной статье предложены новая математическая модель распределения вычислительных ресурсов и эвристические методы решения получаемой задачи оптимизации, что в комплексе реализует организацию распределенных вычислений в системах интернета вещей. Рассматривается сценарий, когда в группе устройств имеется лидер, который принимает решение о распределении вычислительных ресурсов, в том числе и собственных, для распределенного решения вычислительных задач с наличием информационных обменов. Также предполагается, что отсутствует априорная информация о том, какому устройству назначена роль лидера, и о маршрутах миграции вычислительных задач на устройства.
Результаты экспериментального исследования продемонстрировали целесообразность использования предложенных моделей и эвристических методов: достигается распределение вычислительных ресурсов со снижением ресурсной стоимости решения вычислительной задачи до 52 % при учете ресурсной стоимости транзита данных, экономия ресурсов до 73 % при дополнении основных критериев оптимизации распределения задач критерием минимизации количества и расстояний миграций подзадач вычислительной задачи (ВЗ), а также снижение ресурсной стоимости решения задачи распределения вычислительных ресурсов до 28 раз со снижением качества полученного распределения до 10 %.
Ключевые слова: ресурсная стоимость вычислений, оптимизация ресурсных затрат, распределенные вычисления, распределение вычислительных ресурсов, организация распределенных вычислений, интернет вещей.
Mathematical model and heuristic methods of distributed computations organizing in the Internet of Things systems
Computer Research and Modeling, 2025, v. 17, no. 5, pp. 851-870Currently, a significant development has been observed in the direction of distributed computing theory, where computational tasks are solved collectively by resource-constrained devices. In practice, this scenario is implemented when processing data in Internet of Things systems, with the aim of reducing system latency and network infrastructure load, as data is processed on edge network computing devices. However, the rapid growth and widespread adoption of IoT systems raise questions about the need to develop methods for reducing the resource intensity of computations. The resource constraints of computing devices pose the following issues regarding the distribution of computational resources: firstly, the necessity to account for the transit cost between different devices solving various tasks; secondly, the necessity to consider the resource cost associated directly with the process of distributing computational resources, which is particularly relevant for groups of autonomous devices such as drones or robots. An analysis of modern publications available in open access demonstrated the absence of proposed models or methods for distributing computational resources that would simultaneously take into account all these factors, making the creation of a new mathematical model for organizing distributed computing in IoT systems and its solution methods topical. This article proposes a novel mathematical model for distributing computational resources along with heuristic optimization methods, providing an integrated approach to implementing distributed computing in IoT systems. A scenario is considered where there exists a leader device within a group that makes decisions concerning the allocation of computational resources, including its own, for distributed task resolution involving information exchanges. It is also assumed that no prior knowledge exists regarding which device will assume the role of leader or the migration paths of computational tasks across devices. Experimental results have shown the effectiveness of using the proposed models and heuristics: achieving up to a 52% reduction in resource costs for solving computational problems while accounting for data transit costs, saving up to 73% of resources through supplementary criteria optimizing task distribution based on minimizing fragment migrations and distances, and decreasing the resource cost of resolving the computational resource distribution problem by up to 28 times with reductions in distribution quality up to 10%.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




