All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
- Views (last year): 1.
- Views (last year): 20.
-
Космологические модели Вселенной, не имеющей Начала и сингулярности
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 473-486Предлагается новый тип космологических моделей, космологических моделей для Вселенной, не имеющей Начала, то есть существовавшей всегда, и эволюционирующей из бесконечно далекого прошлого.
Предлагаемые космологические модели являются альтернативными по отношению к космологическим моделям, основывающимся на так называемой теории Большого взрыва, по которой Вселенная имеет конечный возраст и произошла из начальной сингулярности.
В этой теории, по нашему мнению, есть определенные проблемы, которые в предлагаемых нами космологических моделях мы избегаем.
В наших космологических моделях Вселенная, развиваясь из бесконечно далекого прошлого, сжимаясь, достигает конечного минимума расстояний между объектами порядка комптоновской длины волны $\lambda_C$ адронов и максимальной плотности вещества, соответствующей адронной эре Вселенной, и затем расширяется, проходя все стадии своей эволюции, установленные астрономическими наблюдениями, вплоть до эры инфляции.
Материальной основой, обеспечивающей принципиальный характер эволюции Вселенной в предлагаемых космологических моделях, является нелинейное дираковское спинорное поле $\psi (x^k)$ с нелинейностью в лагранжиане поля типа $\beta (\bar\psi\psi)^n$ ($\beta = const$, $n$ — рациональное число), где $\psi(x^k)$ — 4-компонентный дираковский спинор, а $\bar{\psi}$ — сопряженный спинор.
Кроме спинорного поля $\psi$ в космологических моделях у нас присутствуют и другие компоненты материи в виде идеальной жидкости с уравнением состояния $p = w\varepsilon$ ($w = const$), при различных значениях коэффициента $w$ $(−1 < w < 1)$, которые обеспечивают эволюцию Вселенной с надлежащими периодами развития в соответствии с установленными наблюдаемыми данными. Здесь $p$ — давление, $\varepsilon = \rho c^2$ — плотность энергии, $\rho$ — плотность массы, а $c$ — скорость света в вакууме.
Оказалось, что наиболее близкими к реальности являются космологические модели с нелинейным спинорным полем с показателем нелинейности $n = 2$.
В этом случае нелинейное спинорное поле представляется уравнением Дирака с кубической нелинейностью.
Но такое уравнение есть нелинейное спинорное уравнение Иваненко–Гейзенберга, которое В. Гейзенберг взял в качестве основы для построения единой спинорной теории материи.
Удивительное совпадение, что одно и то же нелинейное спинорное уравнение может быть основой для построения теории двух разных фундаментальных объектов природы, эволюционирующей Вселенной и физической материи.
Разработки представляемых космологических моделей дополняются их компьютерными исследованиями, результаты которых в работе представлены графически.
Ключевые слова: космологические модели, гравитация, спинорное поле, нелинейность, эволюция Вселенной, компьютерные исследования.
Cosmological models of the Universe without a Beginning and without a singularity
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 473-486A new type of cosmological models for the Universe that has no Beginning and evolves from the infinitely distant past is considered.
These models are alternative to the cosmological models based on the Big Bang theory according to which the Universe has a finite age and was formed from an initial singularity.
In our opinion, there are certain problems in the Big Bang theory that our cosmological models do not have.
In our cosmological models, the Universe evolves by compression from the infinitely distant past tending a finite minimum of distances between objects of the order of the Compton wavelength $\lambda_C$ of hadrons and the maximum density of matter corresponding to the hadron era of the Universe. Then it expands progressing through all the stages of evolution established by astronomical observations up to the era of inflation.
The material basis that sets the fundamental nature of the evolution of the Universe in the our cosmological models is a nonlinear Dirac spinor field $\psi(x^k)$ with nonlinearity in the Lagrangian of the field of type $\beta(\bar{\psi}\psi)^n$ ($\beta = const$, $n$ is a rational number), where $\psi(x^k)$ is the 4-component Dirac spinor, and $\psi$ is the conjugate spinor.
In addition to the spinor field $\psi$ in cosmological models, we have other components of matter in the form of an ideal liquid with the equation of state $p = w\varepsilon$ $(w = const)$ at different values of the coefficient $w (−1 < w < 1)$. Additional components affect the evolution of the Universe and all stages of evolution occur in accordance with established observation data. Here $p$ is the pressure, $\varepsilon = \rho c^2$ is the energy density, $\rho$ is the mass density, and $c$ is the speed of light in a vacuum.
We have shown that cosmological models with a nonlinear spinor field with a nonlinearity coefficient $n = 2$ are the closest to reality.
In this case, the nonlinear spinor field is described by the Dirac equation with cubic nonlinearity.
But this is the Ivanenko–Heisenberg nonlinear spinor equation which W.Heisenberg used to construct a unified spinor theory of matter.
It is an amazing coincidence that the same nonlinear spinor equation can be the basis for constructing a theory of two different fundamental objects of nature — the evolving Universe and physical matter.
The developments of the cosmological models are supplemented by their computer researches the results of which are presented graphically in the work.
-
Странный репеллер в динамике эллиптического профиля с присоединенным вихрем в идеальной жидкости
Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1051-1067В данной работе рассматривается задача о плоскопараллельном движении эллиптического профиля с присоединенным точечным вихрем постоянной интенсивности в идеальной жидкости. Положение вихря относительно профиля считается неизменным во время движения. Течение жидкости вне тела считается потенциальным (за исключением особенности, соответствующей точечному вихрю), а обтекание тела является безциркуляционным. Рассмотрен случай общего положения, когда точечный вихрь не лежит на продолжениях полуосей эллипса. Рассматриваемая задача описывается системой шести дифференциальных уравнений первого порядка. После редукции по группе движений плоскости $E(2)$ она сводится к системе трех дифференциальных уравнений. В работе исследуется данная редуцированная система. Показано, что эта система допускает от одной до пяти неподвижных точек, которым соответствуют движения эллипса по разным окружностям. Основываясь на численных исследованиях фазового потока приведенной системы вблизи неподвижных точек, показано, что рассматриваемая система в общем случае не допускает инвариантной меры с гладкой положительно определенной плотностью. Найдены значения параметров, при которых одна из неподвижных точек редуцированной системы является неустойчивым узлофокусом. Показано, что при продолжении по параметрам из неустойчивой неподвижной точки через бифуркацию Андронова – Хопфа может родиться неустойчивый предельный цикл. В работе исследованы бифуркации данного предельного цикла при изменении положения точечного вихря относительно эллипса. С помощью построения параметрической бифуркационной диаграммы показано, что при изменении параметров системы предельный цикл претерпевает каскад бифуркаций удвоения периода, в результате которого рождается хаотический репеллер (аттрактор в обратном времени). Для численного анализа задачи использовался метод построения двумерного отображения Пуанкаре. Для поиска и анализа простых и странных репеллеров исследование проводилось в обратном времени.
Ключевые слова: идеальная жидкость, эллиптический профиль, точечный вихрь, хаос, странный аттрактор.
Strange repeller in the dynamics of an elliptical foil with an attached vortex in an ideal fluid
Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1051-1067This paper addresses the problem of the plane-parallel motion of an elliptic foil with an attached point vortex of constant strength in an ideal fluid. It is assumed that the position of the vortex relative to the foil remains unchanged during motion. The flow of the fluid outside the body is assumed to be potential (except for the singularity corresponding to a point vortex), and the flow around the body is noncirculatory. Special attention is given to the general position case in which the point vortex does not lie on the continuations of the semiaxes of the ellipse. The problem under consideration is described by a system of six first-order differential equations. After reduction by the motion group of the plane E(2) it reduces to a system of three differential equations. An analysis of this reduced system is made. It is shown that this system admits one to five fixed points which correspond to motions of the ellipse in various circles. By numerically investigating the phase flow of the reduced system near fixed points, it is shown that, in the general case, the system admits no invariant measure with a smooth positive definite density. Parameter values are found for which one of the fixed points of the reduced system is an unstable node-focus. It is shown that, as the variation of the parameters is continued, an unstable limit cycle can arise from an unstable fixed point via an Andronov – Hopf bifurcation. An analysis is made of bifurcations of this limit cycle for the case where the position of the point vortex relative to the ellipse changes. By constructing a parametric bifurcation diagram, it is shown that, as the system’s parameters are varied, the limit cycle undergoes a cascade of period-doubling bifurcations, giving rise to a chaotic repeller (a reversed-time attractor). To carry out a numerical analysis of the problem, the method of constructing a twodimensional Poincaré map is used. The search for and analysis of simple and strange repellers were performed backward in time.
-
Расчет плоских геофизических течений невязкой несжимаемой жидкости бессеточно-спектральным методом
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 413-426Предложен бессеточно-спектральный метод расчета динамики плоских вихревых течений невязкой несжимаемой жидкости в геофизических приближениях с учетом планетарного вращения. Математически задача описывается системой двух уравнений в частных производных относительно функций тока и завихренности с различными граничными условиями (замкнутая область течения и периодические условия). В основе метода лежат следующие положения: поле завихренности задано значениями на множестве частиц; функция завихренности приближается с помощью кусочно-непрерывной аппроксимации кубическими полиномами от двух пространственных переменных; коэффициенты полиномов находятся методом наименьших квадратов; функция тока на каждом временном шаге находится методом Бубнова–Галёркина; динамика жидких частиц рассчитывается псевдосимплектическим методом Рунге–Кутты. В статье впервые подробно описан вариант метода для периодических граничных условий. Адекватность численной схемы проверена на тестовых примерах.
В численном эксперименте исследована динамика конфигурации четырех круглых вихревых пятен с одинаковымр адиусоми постоянной завихренностью, расположенных в вершинах квадрата с центром в полюсе. Изучено влияние планетарного вращения и радиуса пятен на динамику и формирование вихревых структур. Показано, что в случае достаточно большого расстояния между границами вихревых пятен их динамика близка к поведению точечных вихрей с той же интенсивностью. При росте радиуса возникает взаимодействие между вихрями, которое приводит к их слиянию. В зависимости от направления вращения сила Кориолиса может усиливать или замедлять процессы взаимодействия и перемешивания вихрей. Так, вихревая структура из четырех вихрей при небольших радиусах пятен стабилизируется в случае сонаправленности собственного и планетарного вращений и разрушается на меньших временах при противоположных направлениях. При больших радиусах вихревая структура не стабилизируется.
Numerical calculation of planar geophysical flows of an inviscid incompressible fluid by a meshfree-spectral method
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 413-426Views (last year): 16.In this article, a meshfree-spectral method for numerical investigation of dynamics of planar geophysical flows is proposed. We investigate inviscid incompressible fluid flows with the presence of planetary rotation. Mathematically this problem is described by the non-steady system of two partial differential equations in terms of stream and vorticity functions with different boundary conditions (closed flow region and periodic conditions). The proposed method is based on several assumptions. First of all, the vorticity field is given by its values on the set of particles. The function of vorticity distribution is approximated by piecewise cubic polynomials. Coefficients of polynomials are found by least squares method. The stream function is calculated by using the spectral global Bubnov –Galerkin method at each time step.
The dynamics of fluid particles is calculated by pseudo-symplectic Runge –Kutta method. A detailed version of the method for periodic boundary conditions is described in this article for the first time. The adequacy of numerical scheme was examined on test examples. The dynamics of the configuration of four identical circular vortex patches with constant vorticity located at the vertices of a square with a center at the pole is investigated by numerical experiments. The effect of planetary rotation and the radius of patches on the dynamics and formation of vortex structures is studied. It is shown that, depending on the direction of rotation, the Coriolis force can enhance or slow down the processes of interaction and mixing of the distributed vortices. At large radii the vortex structure does not stabilize.
-
Влияние хвостовых плавников на скорость водного робота, приводимого в движение внутренними подвижными массами
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 869-882В данной работе представлено описание конструкции водного робота, движущегося по поверхности жидкости и приводимого в движение двумя внутренними подвижными массами. Корпус водного робота в сечении имеет форму симметричного крылового профиля с острой кромкой. На данном прототипе две внутренние массы перемещаются по окружностям и приводятся во вращение за счет одного двигателя постоянного тока и зубчатого механизма, передающего вращательный момент от двигателя к каждой массе. В качестве управляющего воздействия используются угловые скорости подвижных масс, а разработанная кинематическая схема передачи вращения от двигателя к подвижным массам позволяет реализовать вращение двух масс с равными по модулю угловыми скоростями, но при этом разным направлением вращения. А также на корпус данного робота имеется возможность устанавливать дополнительные хвостовые плавники различных форм и размеров. Также в работе для данного объекта представлены уравнения движения, записанные в форме уравнений Кирхгофа для движения твердого тела в идеальной жидкости, дополненные слагаемыми вязкого сопротивления. Представлено математическое описание дополнительных сил, действующих на гибкий хвостовой плавник. С разработанным прототипом робота проведены экспериментальные исследования по влиянию различных хвостовых плавников на скорость передвижения в жидкости. В данной работе на робота устанавливались хвостовые плавники одной формы и размеров, при этом обладающие разной жесткостью. Эксперименты проводились в бассейне с водой, над которым устанавливалась камера, на которую были получены видеозаписи всех экспериментов. Дальнейшая обработка видеозаписей позволила получить перемещения объекта, а также его линейные и угловые скорости. В работе показано различие в развиваемых роботом скоростях при движении без хвостового плавника, а также с хвостовыми плавниками, имеющими разную жесткость. Приведено сравнение развиваемых роботом скоростей, полученных в экспериментальных исследованиях, с результатами математического моделирования системы.
Ключевые слова: мобильный робот, водный робот, моделирование движения, экспериментальные исследования.
The influence of tail fins on the speed of an aquatic robot driven by internal moving masses
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 869-882This paper describes the design of an aquatic robot moving on the surface of a fluid and driven by two internal moving masses. The body of the aquatic robot in cross section has the shape of a symmetrical airfoil with a sharp edge. In this prototype, two internal masses move in circles and are rotated by a single DC motor and a gear mechanism that transmits torque from the motor to each mass. Angular velocities of moving masses are used as a control action, and the developed kinematic scheme for transmitting rotation from the motor to the moving masses allows the rotation of two masses with equal angular velocities in magnitude, but with a different direction of rotation. It is also possible to install additional tail fins of various shapes and sizes on the body of this robot. Also in the work for this object, the equations of motion are presented, written in the form of Kirchhoff equations for the motion of a solid body in an ideal fluid, which are supplemented by terms of viscous resistance. A mathematical description of the additional forces acting on the flexible tail fin is presented. Experimental studies on the influence of various tail fins on the speed of motion in the fluid were carried out with the developed prototype of the robot. In this work, tail fins of the same shape and size were installed on the robot, while having different stiffness. The experiments were carried out in a pool with water, over which a camera was installed, on which video recordings of all the experiments were obtained. Next processing of the video recordings made it possible to obtain the object’s movements coordinates, as well as its linear and angular velocities. The paper shows the difference in the velocities developed by the robot when moving without a tail fin, as well as with tail fins having different stiffness. The comparison of the velocities developed by the robot, obtained in experimental studies, with the results of mathematical modeling of the system is given.
-
Управление движением тела с помощью внутренних масс в вязкой жидкости
Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 445-460Данная статья посвящена изучению самопродвижения тел в жидкости за счет действия внутренних механизмов, без изменения внешней формы тела. В работе представлен обзор теоретических работ, обосновывающих возможностьда нного перемещения в идеальной и вязкой жидкостях.
Рассмотрен частный случай самопродвижения твердого тела по поверхности жидкости за счет движения двух внутренних масс по окружностям. В работе представлена математическая модельдвиж ения твердого тела с подвижными внутренними массами в трехмерной постановке. Данная модельу читывает трехмерные колебания тела при движении, возникающие под действием внешних сил — силы тяжести, силы Архимеда и сил, действующих на тело со стороны вязкой жидкости.
В качестве тела рассмотрен однородный эллиптический цилиндр с килем, расположенным вдоль большей диагонали. Внутри цилиндра расположены две материальные точечные массы, перемещающиеся по окружностям. Центры окружностей лежат на наименьшей диагонали эллипса на равном удалении от центра масс.
Уравнения движения рассматриваемой системы (тело с двумя материальными точками, помещенное в жидкость) представлены в виде уравнений Кирхгофа с добавлением внешних сил и моментов, действующих на тело. Для описания сил сопротивления движению в жидкости выбрана феноменологическая модель вязкого трения, квадратичная по скорости. Коэффициенты сопротивления движению, используемые в модели, определялись экспериментально. Силы, действующие на киль, определялись с помощью численного моделирования колебаний киля в вязкой жидкости с использованием уравнений Навье–Стокса.
В данной работе была проведена экспериментальная проверка предложенной математической модели. Представлено несколько серий экспериментов по самопродвижению тела в жидкости с помощью вращения внутренних масс с разными скоростями вращения. Исследована зависимостьс редней скорости продвижения, размаха поперечных колебаний в зависимости от частоты вращения внутренних масс. Проведено сравнение полученных экспериментальных данных с результатами, полученными в рамках предложенной математической модели.
Ключевые слова: движение в жидкости, самопродвижение, уравнения движения, безвинтовой надводный робот, уравнения Навье–Стокса.
Controlling the movement of the body using internal masses in a viscous liquid
Computer Research and Modeling, 2018, v. 10, no. 4, pp. 445-460Views (last year): 21. Citations: 2 (RSCI).This article is devoted to the study of self-propulsion of bodies in a fluid by the action of internal mechanisms, without changing the external shape of the body. The paper presents an overview of theoretical papers that justify the possibility of this displacement in ideal and viscous liquids.
A special case of self-propulsion of a rigid body along the surface of a liquid is considered due to the motion of two internal masses along the circles. The paper presents a mathematical model of the motion of a solid body with moving internal masses in a three-dimensional formulation. This model takes into account the three-dimensional vibrations of the body during motion, which arise under the action of external forces-gravity force, Archimedes force and forces acting on the body, from the side of a viscous fluid.
The body is a homogeneous elliptical cylinder with a keel located along the larger diagonal. Inside the cylinder there are two material point masses moving along the circles. The centers of the circles lie on the smallest diagonal of the ellipse at an equal distance from the center of mass.
Equations of motion of the system (a body with two material points, placed in a fluid) are represented as Kirchhoff equations with the addition of external forces and moments acting on the body. The phenomenological model of viscous friction is quadratic in velocity used to describe the forces of resistance to motion in a fluid. The coefficients of resistance to movement were determined experimentally. The forces acting on the keel were determined by numerical modeling of the keel oscillations in a viscous liquid using the Navier – Stokes equations.
In this paper, an experimental verification of the proposed mathematical model was carried out. Several series of experiments on self-propulsion of a body in a liquid by means of rotation of internal masses with different speeds of rotation are presented. The dependence of the average propagation velocity, the amplitude of the transverse oscillations as a function of the rotational speed of internal masses is investigated. The obtained experimental data are compared with the results obtained within the framework of the proposed mathematical model.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




