Результаты поиска по 'идентификация вещества':
Найдено статей: 7
  1. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 259-261
    Editor's note
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 259-261
  2. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1097-1100
    Editor’s note
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1097-1100
  3. От редакции
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 525-528
    Editor’s note
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 525-528
  4. От редакции
    Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 757-760
    Editor’s note
    Computer Research and Modeling, 2025, v. 17, no. 5, pp. 757-760
  5. Назаров В.Г., Прохоров И.В., Яровенко И.П.
    Идентификация неоднородного вещества методами импульсной мультиэнергетической томографии
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 621-639

    В статье рассматриваются математические аспекты проблемы идентификации многокомпонентной рассеивающей среды по данным импульсного мультиэнергетического рентгеновского облучения. Задачи рентгеновской диагностики представляют значительный интерес как с теоретической, так и с практической точки зрения, а радиографические методыне заменимы при неразрушающем контроле изделий.

    В рамках математической модели на основе нестационарного интегро-дифференциального уравнения переноса излучения сформулированы обратная задача нахождения коэффициента ослабления по излучению, известному на границе области, и задача идентификации вещества по найденным значениям коэффициента ослабления на дискретном наборе энергий облучения среды. Проведена предварительная обработка широкого списка веществ, представляющих интерес в компьютерной томографии, на предмет возможности их идентификации по приближенно заданному коэффициенту ослабления излучения, характеризующему среду. При анализе степени близости веществ в некоторой норме установлено, что множество всех возможных веществ, потенциально содержащихся в среде, распадается на конечное число непересекающихся кластеров. При достаточно малой длительности зондирующего сигнала рассеивающая составляющая выходящего из среды излучения асимптотически мала. Это обстоятельство позволяет свести обратную задачу для уравнения переноса излучения к задаче обращения преобразования Радона от коэффициента ослабления. Методами численного моделирования на специально разработанном цифровом фантоме анализируется возможность однозначной или частичной идентификации вещества при варьировании длительности зондирующего импульса и числа энергетических уровней облучения среды.

    Nazarov V.G., Prokhorov I.V., Yarovenko I.P.
    Identification of inhomogeneous matter by pulsed multienergy tomography methods
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 621-639

    The article considers the mathematical aspects of the problem of identifying a multicomponent scattering medium based on pulsed multienergy X-ray irradiation data. X-ray diagnostics problems are of considerable interest from both theoretical and practical points of view, and radiographic methods are indispensable in non-destructive testing of products.

    Within the framework of a mathematical model based on a non-stationary integro-differential equation of radiation transfer, the inverse problem of finding the attenuation coefficient for radiation known at the boundary of the region and the problem of identifying a substance based on the found values of the attenuation coefficient on a discrete set of irradiation energies of the medium are formulated.

    A preliminary processing of a wide list of substances of interest in computed tomography was carried out to determine the possibility of their identification by an approximately specified radiation attenuation coefficient characterizing the medium. When analyzing the degree of proximity of substances in a certain norm, it was found that the set of all possible substances potentially contained in the medium is divided into a finite number of non-intersecting clusters. For a sufficiently short duration of the probing signal, the scattering component of the radiation leaving the medium is asymptotically small. This circumstance allows us to reduce the inverse problem for the radiation transfer equation to the problem of inverting the Radon transform from the attenuation coefficient. The possibility of unambiguous or partial identification of a substance by varying the duration of the probing pulse and the number of energy levels of irradiation of the medium is analyzed using numerical modeling methods on a specially developed digital phantom.

  6. Королев С.А., Майков Д.В.
    Решение задачи оптимального управления процессом метаногенеза на основе принципа максимума Понтрягина
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 357-367

    В работе представлена математическая модель, описывающая процесс получения биогаза из отходов животноводства. Данная модель описывает процессы, протекающие в биогазовой установке для мезофильной и термофильной сред, а также для непрерывного и периодического режимов поступления субстрата. Приведены найденные ранее для периодического режима значения коэффициентов этой модели, полученные путем решения задачи идентификации модели по экспериментальным данным с использованием генетического алгоритма.

    Для модели метаногенеза сформулирована задача оптимального управления в форме задачи Лагранжа, критериальный функционал которой представляет собой выход биогаза за определенный промежуток времени. Управляющим параметром задачи служит скорость поступления субстрата в биогазовую установку. Предложен алгоритм решения данной задачи, основанный на численной реализации принципа максимума Понтрягина. При этом в качестве метода оптимизации применялся гибридный генетический алгоритм с дополнительным поиском в окрестности лучшего решения методом сопряженных градиентов. Данный численный метод решения задачи оптимального управления является универсальным и применим к широкому классу математических моделей.

    В ходе исследования проанализированы различные режимы подачи субстрата в метантенк, температурные среды и виды сырья. Показано, что скорость образования биогаза при непрерывном режиме подачи сырья в 1.4–1.9 раза выше в мезофильной среде (в 1.9–3.2 — в термофильной среде), чем при периодическом режиме за период полной ферментации, что связано с большей скоростью подачи субстрата и большей концентрацией питательных веществ в субстрате. Однако выход биогаза за период полной ферментации при периодическом режиме вдвое выше выхода за период полной смены субстрата в метантенке при непрерывном режиме, что означает неполную переработку субстрата во втором случае. Скорость образования биогаза для термофильной среды при непрерывном режиме и оптимальной скорости подачи сырья втрое выше, чем для мезофильной среды. Сравнение выхода биогаза для различных типов сырья показывает, что наибольший выход биогаза наблюдается для отходов птицефабрик, наименьший — для отходов ферм КРС, что связано с содержанием питательных веществ в единице субстрата каждого вида.

    Korolev S.A., Maykov D.V.
    Solution of the problem of optimal control of the process of methanogenesis based on the Pontryagin maximum principle
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 357-367

    The paper presents a mathematical model that describes the process of obtaining biogas from livestock waste. This model describes the processes occurring in a biogas plant for mesophilic and thermophilic media, as well as for continuous and periodic modes of substrate inflow. The values of the coefficients of this model found earlier for the periodic mode, obtained by solving the problem of model identification from experimental data using a genetic algorithm, are given.

    For the model of methanogenesis, an optimal control problem is formulated in the form of a Lagrange problem, whose criterial functionality is the output of biogas over a certain period of time. The controlling parameter of the task is the rate of substrate entry into the biogas plant. An algorithm for solving this problem is proposed, based on the numerical implementation of the Pontryagin maximum principle. In this case, a hybrid genetic algorithm with an additional search in the vicinity of the best solution using the method of conjugate gradients was used as an optimization method. This numerical method for solving an optimal control problem is universal and applicable to a wide class of mathematical models.

    In the course of the study, various modes of submission of the substrate to the digesters, temperature environments and types of raw materials were analyzed. It is shown that the rate of biogas production in the continuous feed mode is 1.4–1.9 times higher in the mesophilic medium (1.9–3.2 in the thermophilic medium) than in the periodic mode over the period of complete fermentation, which is associated with a higher feed rate of the substrate and a greater concentration of nutrients in the substrate. However, the yield of biogas during the period of complete fermentation with a periodic mode is twice as high as the output over the period of a complete change of the substrate in the methane tank at a continuous mode, which means incomplete processing of the substrate in the second case. The rate of biogas formation for a thermophilic medium in continuous mode and the optimal rate of supply of raw materials is three times higher than for a mesophilic medium. Comparison of biogas output for various types of raw materials shows that the highest biogas output is observed for waste poultry farms, the least — for cattle farms waste, which is associated with the nutrient content in a unit of substrate of each type.

  7. Калитин К.Ю., Невзоров А.А., Спасов А.А., Муха О.Ю.
    Распознавание эффектов и механизма действия препаратов на основе анализа внутричерепной ЭЭГ с помощью методов глубокого обучения
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 755-772

    Прогнозирование новых свойств лекарственных средств является основной задачей в рамках решения проблем полифармакологии, репозиционирования, а также изучения биологически активных веществ на доклиническом этапе. Идентификация фармакологических эффектов и взаимодействий «препарат – мишень» с использованием машинного обучения (включая методы глубокого обучения) набирает популярность в последние годы.

    Цель работы состояла в разработке метода распознавания психотропных эффектов и механизма действия (взаимодействий препарата с мишенью) на основании анализа биоэлектрической активности мозга с применением технологий искусственного интеллекта.

    Выполнялась регистрация электроэнцефалографических (ЭЭГ) сигналов крыс (4 канала, частота дискретизации — 500 Гц) после введения психотропных препаратов (габапентин, диазепам, карбамазепин, прегабалин, эсликарбазепин, феназепам, ареколин, коразол, пикротоксин, пилокарпин, хлоралгидрат). Сигналы (эпохи продолжительностью 2 с) преобразовывались в изображения $(2000 \times 4)$ и затем поступали на вход автоэнкодера. Выходные данные слоя «бутылочного горлышка» классифицировались и кластеризовались (с применением алгоритма t-SNE), а затем вычислялись расстояния между кластерами в пространстве параметров. В качестве альтернативны использовался подход, основанный на извлечении признаков с размерной редукцией при помощи метода главных компонент и классификацией методом опорных векторов с ядерной функцией (kSVM). Модели валидировались путем 5-кратной кроссвалидации.

    Точность классификации для 11 препаратов, полученная в ходе кросс-валидации, достигала $0,580 \pm 0,021$, что значительно превышает точность случайного классификатора, которая составляла $0,091 \pm 0,045$ $(p < 0,0001)$, и точность kSVM, равную $0,441 \pm 0,035$ $(p < 0,05)$. Получены t-SNE-карты параметров «бутылочного горлышка» сигналов интракраниальной ЭЭГ. Определена относительная близость кластеров сигналов в параметрическом пространстве.

    В настоящем исследовании представлен оригинальный метод биопотенциал-опосредованного прогнозирования эффектов и механизма действия (взаимодействия лекарственного средства с мишенью). Метод использует сверточные нейронные сети в сочетании с модифицированным алгоритмом избирательной редукции параметров. ЭЭГ-сигналы, зарегистрированные после введения препаратов, были представлены в едином пространстве параметров в сжатой форме. Полученные данные указывают на возможность распознавания паттернов нейронального отклика в ответ на введение различных психотропных препаратов с помощью предложенного нейросетевого классификатора и кластеризации.

    Kalitin K.Y., Nevzorov A.A., Spasov A.A., Mukha O.Y.
    Deep learning analysis of intracranial EEG for recognizing drug effects and mechanisms of action
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 755-772

    Predicting novel drug properties is fundamental to polypharmacology, repositioning, and the study of biologically active substances during the preclinical phase. The use of machine learning, including deep learning methods, for the identification of drug – target interactions has gained increasing popularity in recent years.

    The objective of this study was to develop a method for recognizing psychotropic effects and drug mechanisms of action (drug – target interactions) based on an analysis of the bioelectrical activity of the brain using artificial intelligence technologies.

    Intracranial electroencephalographic (EEG) signals from rats were recorded (4 channels at a sampling frequency of 500 Hz) after the administration of psychotropic drugs (gabapentin, diazepam, carbamazepine, pregabalin, eslicarbazepine, phenazepam, arecoline, pentylenetetrazole, picrotoxin, pilocarpine, chloral hydrate). The signals were divided into 2-second epochs, then converted into $2000\times 4$ images and input into an autoencoder. The output of the bottleneck layer was subjected to classification and clustering using t-SNE, and then the distances between resulting clusters were calculated. As an alternative, an approach based on feature extraction with dimensionality reduction using principal component analysis and kernel support vector machine (kSVM) classification was used. Models were validated using 5-fold cross-validation.

    The classification accuracy obtained for 11 drugs during cross-validation was $0.580 \pm 0.021$, which is significantly higher than the accuracy of the random classifier $(0.091 \pm 0.045, p < 0.0001)$ and the kSVM $(0.441 \pm 0.035, p < 0.05)$. t-SNE maps were generated from the bottleneck parameters of intracranial EEG signals. The relative proximity of the signal clusters in the parametric space was assessed.

    The present study introduces an original method for biopotential-mediated prediction of effects and mechanism of action (drug – target interaction). This method employs convolutional neural networks in conjunction with a modified selective parameter reduction algorithm. Post-treatment EEGs were compressed into a unified parameter space. Using a neural network classifier and clustering, we were able to recognize the patterns of neuronal response to the administration of various psychotropic drugs.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"