All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Статистический анализ фазы квазигармонического сигнала методом моментов как инструмент оценивания параметров сигнала
Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1037-1049В работе представлены результаты теоретического исследования особенностей статистического распределения фазы квазигармонического сигнала, формируемого в результате воздействия гауссовского шума на исходно гармонический сигнал. Выявленные особенности распределения фазы легли в основу развиваемого оригинального метода оценивания параметров исходного, неискаженного сигнала. Показано, что задача оценивания исходного значения фазы может эффективно решаться расчетом математического ожидания результатов выборочных измерений фазы, в то время как для решения задачи оценивания второго параметра распределения фазы — параметра уровня сигнала относительно шума — предлагается использовать зависимость дисперсии выборочных значений фазы от данного параметра. Для решения этой задачи используются полученные в явном виде аналитические формулы для моментов низших порядков распределения фазы, развит и обоснован новый подход к оцениванию параметров квазигармонического сигнала на основе измерения величины второго центрального момента, т. е. разброса выборочных значений фазы. В частности, применение данного метода обеспечивает высокоточное измерение амплитудных характеристик анализируемого сигнала посредством проведения лишь фазовых измерений. Численные результаты, полученные в ходе проведенного компьютерного моделирования, подтверждают теоретические выводы и эффективность разработанного метода. В работе обоснованы существование и единственность решения задачи оценивания параметров сигнала методом моментов. Показано, что функция, отображающая зависимость второго центрального момента от искомого параметра отношения сигнала к шуму, является монотонно убывающей и тем самым однозначной функцией искомого параметра. Разработанный метод оценивания параметров сигнала представляет интерес для решения широкого круга научных и прикладных задач, связанных с необходимостью измерения уровня сигнала и его фазы, в таких областях, как обработка данных в системах медицинской диагностической визуализации, обработка радиосигналов, радиофизика, оптика, радионавигация, метрология.
Ключевые слова: квазигармонический сигнал, гауссовский шум, отношение сигнала к шуму, метод моментов, дисперсия, второй центральный момент, функция распределения, функция плотности вероятности.
Statistical analysis of the quasi-harmonic signal’s phase by method of moments as a tool of signal’s parameters estimation
Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1037-1049The paper presents the results of theoretical investigation of the peculiarities of the quasi-harmonic signal’s phase statistical distribution, while the quasi-harmonic signal is formed as a result of the Gaussian noise impact on the initially harmonic signal. The revealed features of the phase distribution became a basis for the original technique elaborated for estimating the parameters of the initial, undistorted signal. It has been shown that the task of estimation of the initial phase value can be efficiently solved by calculating the magnitude of the mathematical expectation of the results of the phase sampled measurements, while for solving the task of estimation of the second parameter — the signal level respectively to the noise level — the dependence of the phase sampled measurements variance upon the sough-for parameter is proposed to be used. For solving this task the analytical formulas having been obtained in explicit form for the moments of lower orders of the phase distribution, are applied. A new approach to quasi-harmonic signal’s parameters estimation based on the method of moments has been developed and substantiated. In particular, the application of this method ensures a high-precision measuring the amplitude characteristics of a signal by means of the phase measurements only. The numerical results obtained by means of conducted computer simulation of the elaborated technique confirm both the theoretical conclusions and the method’s efficiency. The existence and the uniqueness of the task solution by the method of moments is substantiated. It is shown that the function that describes the dependence of the phase second central moment on the sough-for parameter, is a monotonically decreasing and thus the single-valued function. The developed method may be of interest for solving a wide range of scientific and applied tasks, connected with the necessity of estimation of both the signal level and the phase value, in such areas as data processing in systems of medical diagnostic visualization, radio-signals processing, radio-physics, optics, radio-navigation and metrology.
-
Исследование состояний равновесия второго рода уравнения Курамото–Сивашинского с однородными условиями Неймана
Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 59-69Рассматривается известное эволюционное уравнение математической физики, которое в современной математической литературе принято называть уравнением Курамото–Сивашинского. В данной работе это уравнение изучается в первоначальной редакции авторов работ, где оно было предложено, вместе с однородными краевыми условиями Неймана. Изучен вопрос о существовании и устойчивости локальных аттракторов, сформированных пространственно-неоднородными решениями изучаемой краевой задачи. Данный вопрос стал особенно актуален в последнее время в связи с моделированием процесса формирования наноструктур на поверхности полупроводников под воздействием потока ионов или лазерного излучения.
Изучен вопрос о существовании и устойчивости состояний равновесия второго рода двумя различными способами. В первом из них использован метод Галёркина. Второй подход основан на использовании строго обоснованных методов теории динамических систем с бесконечномерным фазовым пространством: метод интегральных многообразий, теория нормальных форм, асимптотические методы.
В работе в целом повторен подход из известной работы Д. Армбрустера, Д. Гукенхеймера, Ф.Холмса, где использован подход, основанный на применении метода Галёркина. Результаты такого анализа расширены и развиты. Использование возможностей современных компьютеров помогло существенно дополнить анализ этой задачи. В частности, найти все решения в четырех- и пятичленных аппроксимациях Галёркина, которые для изучаемой краевой задачи следует интерпретировать как состояния равновесия второго рода. Также дан анализ их устойчивости в смысле определения А. М. Ляпунова.
В данной работе проведено сравнение результатов, полученных с использованием метода Галёркина с результатами бифуркационного анализа краевой задачи на базе применения методов качественного анализа бесконечномерных динамических систем. Сравнение двух вариантов результатов показало некоторую ограниченность возможностей использования метода Галёркина.
Ключевые слова: уравнение Курамото – Сивашинского, краевая задача, состояния равновесия, устойчивость, метод Галёркина, компьютерный анализ.
Equilibrium states of the second kind of the Kuramoto – Sivashinsky equation with the homogeneous Neumann boundary conditions
Computer Research and Modeling, 2019, v. 11, no. 1, pp. 59-69Views (last year): 27.The well-known evolutionary equation of mathematical physics, which in modern mathematical literature is called the Kuramoto – Sivashinsky equation, is considered. In this paper, this equation is studied in the original edition of the authors, where it was proposed, together with the homogeneous Neumann boundary conditions.
The question of the existence and stability of local attractors formed by spatially inhomogeneous solutions of the boundary value problem under study has been studied. This issue has become particularly relevant recently in connection with the simulation of the formation of nanostructures on the surface of semiconductors under the influence of an ion flux or laser radiation. The question of the existence and stability of second-order equilibrium states has been studied in two different ways. In the first of these, the Galerkin method was used. The second approach is based on using strictly grounded methods of the theory of dynamic systems with infinite-dimensional phase space: the method of integral manifolds, the theory of normal forms, asymptotic methods.
In the work, in general, the approach from the well-known work of D.Armbruster, D.Guckenheimer, F.Holmes is repeated, where the approach based on the application of the Galerkin method is used. The results of this analysis are substantially supplemented and developed. Using the capabilities of modern computers has helped significantly complement the analysis of this task. In particular, to find all the solutions in the fourand five-term Galerkin approximations, which for the studied boundary-value problem should be interpreted as equilibrium states of the second kind. An analysis of their stability in the sense of A. M. Lyapunov’s definition is also given.
In this paper, we compare the results obtained using the Galerkin method with the results of a bifurcation analysis of a boundary value problem based on the use of qualitative analysis methods for infinite-dimensional dynamic systems. Comparison of two variants of results showed some limited possibilities of using the Galerkin method.
-
Космологические модели Вселенной, не имеющей Начала и сингулярности
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 473-486Предлагается новый тип космологических моделей, космологических моделей для Вселенной, не имеющей Начала, то есть существовавшей всегда, и эволюционирующей из бесконечно далекого прошлого.
Предлагаемые космологические модели являются альтернативными по отношению к космологическим моделям, основывающимся на так называемой теории Большого взрыва, по которой Вселенная имеет конечный возраст и произошла из начальной сингулярности.
В этой теории, по нашему мнению, есть определенные проблемы, которые в предлагаемых нами космологических моделях мы избегаем.
В наших космологических моделях Вселенная, развиваясь из бесконечно далекого прошлого, сжимаясь, достигает конечного минимума расстояний между объектами порядка комптоновской длины волны $\lambda_C$ адронов и максимальной плотности вещества, соответствующей адронной эре Вселенной, и затем расширяется, проходя все стадии своей эволюции, установленные астрономическими наблюдениями, вплоть до эры инфляции.
Материальной основой, обеспечивающей принципиальный характер эволюции Вселенной в предлагаемых космологических моделях, является нелинейное дираковское спинорное поле $\psi (x^k)$ с нелинейностью в лагранжиане поля типа $\beta (\bar\psi\psi)^n$ ($\beta = const$, $n$ — рациональное число), где $\psi(x^k)$ — 4-компонентный дираковский спинор, а $\bar{\psi}$ — сопряженный спинор.
Кроме спинорного поля $\psi$ в космологических моделях у нас присутствуют и другие компоненты материи в виде идеальной жидкости с уравнением состояния $p = w\varepsilon$ ($w = const$), при различных значениях коэффициента $w$ $(−1 < w < 1)$, которые обеспечивают эволюцию Вселенной с надлежащими периодами развития в соответствии с установленными наблюдаемыми данными. Здесь $p$ — давление, $\varepsilon = \rho c^2$ — плотность энергии, $\rho$ — плотность массы, а $c$ — скорость света в вакууме.
Оказалось, что наиболее близкими к реальности являются космологические модели с нелинейным спинорным полем с показателем нелинейности $n = 2$.
В этом случае нелинейное спинорное поле представляется уравнением Дирака с кубической нелинейностью.
Но такое уравнение есть нелинейное спинорное уравнение Иваненко–Гейзенберга, которое В. Гейзенберг взял в качестве основы для построения единой спинорной теории материи.
Удивительное совпадение, что одно и то же нелинейное спинорное уравнение может быть основой для построения теории двух разных фундаментальных объектов природы, эволюционирующей Вселенной и физической материи.
Разработки представляемых космологических моделей дополняются их компьютерными исследованиями, результаты которых в работе представлены графически.
Ключевые слова: космологические модели, гравитация, спинорное поле, нелинейность, эволюция Вселенной, компьютерные исследования.
Cosmological models of the Universe without a Beginning and without a singularity
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 473-486A new type of cosmological models for the Universe that has no Beginning and evolves from the infinitely distant past is considered.
These models are alternative to the cosmological models based on the Big Bang theory according to which the Universe has a finite age and was formed from an initial singularity.
In our opinion, there are certain problems in the Big Bang theory that our cosmological models do not have.
In our cosmological models, the Universe evolves by compression from the infinitely distant past tending a finite minimum of distances between objects of the order of the Compton wavelength $\lambda_C$ of hadrons and the maximum density of matter corresponding to the hadron era of the Universe. Then it expands progressing through all the stages of evolution established by astronomical observations up to the era of inflation.
The material basis that sets the fundamental nature of the evolution of the Universe in the our cosmological models is a nonlinear Dirac spinor field $\psi(x^k)$ with nonlinearity in the Lagrangian of the field of type $\beta(\bar{\psi}\psi)^n$ ($\beta = const$, $n$ is a rational number), where $\psi(x^k)$ is the 4-component Dirac spinor, and $\psi$ is the conjugate spinor.
In addition to the spinor field $\psi$ in cosmological models, we have other components of matter in the form of an ideal liquid with the equation of state $p = w\varepsilon$ $(w = const)$ at different values of the coefficient $w (−1 < w < 1)$. Additional components affect the evolution of the Universe and all stages of evolution occur in accordance with established observation data. Here $p$ is the pressure, $\varepsilon = \rho c^2$ is the energy density, $\rho$ is the mass density, and $c$ is the speed of light in a vacuum.
We have shown that cosmological models with a nonlinear spinor field with a nonlinearity coefficient $n = 2$ are the closest to reality.
In this case, the nonlinear spinor field is described by the Dirac equation with cubic nonlinearity.
But this is the Ivanenko–Heisenberg nonlinear spinor equation which W.Heisenberg used to construct a unified spinor theory of matter.
It is an amazing coincidence that the same nonlinear spinor equation can be the basis for constructing a theory of two different fundamental objects of nature — the evolving Universe and physical matter.
The developments of the cosmological models are supplemented by their computer researches the results of which are presented graphically in the work.
-
Статистическое распределение фазы квазигармонического сигнала: основы теории и компьютерное моделирование
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 287-297В работе представлены результаты фундаментального исследования, направленного на теоретическое изучение и компьютерное моделирование свойств статистического распределения фазы квазигармонического сигнала, формируемого в результате воздействия гауссовского шума на исходно гармонический сигнал. Методами математического анализа получены в явном виде формулы для основных характеристик данного распределения — функции распределения, функции плотности вероятности, функции правдоподобия. В результате проведенного компьютерного моделирования проанализированы зависимости данных функций от параметров распределения фазы. В работе разработаны и обоснованы методы оценивания параметров распределения фазы, несущих информацию об исходном, не искаженном шумом сигнале. Показано, что задача оценивания исходного значения фазы квазигармонического сигнала может эффективно решаться простым усреднением результатов выборочных измерений фазы, в то время как для решения задачи оценивания второго параметра распределения фазы — параметра уровня сигнала относительно шума — предлагается использовать метод максимума правдоподобия. В работе представлены графические материалы, полученные путем компьютерного моделирования основных характеристик исследуемого статистического распределения фазы. Существование и единственность максимума функции правдоподобия позволяют обосновать возможность и эффективность решения задачи оценивания уровня сигнала относительно уровня шума методом максимума правдоподобия. Развиваемый в работе метод оценивания уровня незашумленного сигнала относительно уровня шума, т.е. параметра, характеризующего интенсивность сигнала, на основании измерений фазы сигнала является оригинальным, принципиально новым, открывающим перспективы использования фазовых измерений как инструмента анализа стохастических данных. Данное исследование является значимым для решения задач расчета фазы и уровня сигнала методами статистической обработки выборочных фазовых измерений. Предлагаемые методы оценивания параметров распределения фазы квазигармонического сигнала могут использоваться при решении различных научных и прикладных задач, в частности, в таких областях, как радиофизика, оптика, радиолокация, радионавигация, метрология.
Ключевые слова: квазигармонический сигнал, гауссовский шум, отношение сигнала к шуму, функция распределения, функция плотности вероятности, функция правдоподобия, интеграл ошибок.
Statistical distribution of the quasi-harmonic signal’s phase: basics of theory and computer simulation
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 287-297The paper presents the results of the fundamental research directed on the theoretical study and computer simulation of peculiarities of the quasi-harmonic signal’s phase statistical distribution. The quasi-harmonic signal is known to be formed as a result of the Gaussian noise impact on the initially harmonic signal. By means of the mathematical analysis the formulas have been obtained in explicit form for the principle characteristics of this distribution, namely: for the cumulative distribution function, the probability density function, the likelihood function. As a result of the conducted computer simulation the dependencies of these functions on the phase distribution parameters have been analyzed. The paper elaborates the methods of estimating the phase distribution parameters which contain the information about the initial, undistorted signal. It has been substantiated that the task of estimating the initial value of the phase of quasi-harmonic signal can be efficiently solved by averaging the results of the sampled measurements. As for solving the task of estimating the second parameter of the phase distribution, namely — the parameter, determining the signal level respectively the noise level — a maximum likelihood technique is proposed to be applied. The graphical illustrations are presented that have been obtained by means of the computer simulation of the principle characteristics of the phase distribution under the study. The existence and uniqueness of the likelihood function’s maximum allow substantiating the possibility and the efficiency of solving the task of estimating signal’s level relative to noise level by means of the maximum likelihood technique. The elaborated method of estimating the un-noised signal’s level relative to noise, i. e. the parameter characterizing the signal’s intensity on the basis of measurements of the signal’s phase is an original and principally new technique which opens perspectives of usage of the phase measurements as a tool of the stochastic data analysis. The presented investigation is meaningful for solving the task of determining the phase and the signal’s level by means of the statistical processing of the sampled phase measurements. The proposed methods of the estimation of the phase distribution’s parameters can be used at solving various scientific and technological tasks, in particular, in such areas as radio-physics, optics, radiolocation, radio-navigation, metrology.
-
Новая форма уравнений в моделировании движения тяжелого твердого тела
Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 873-884В динамике тяжелого твердого тела с неподвижной точкой известны различные типы редуцированных уравнений. Поскольку уравнения Эйлера–Пуассона допускают три первых интеграла, то в первом подходе получение новых форм уравнений, как правило, основано на этих интегралах. С их помощью можно систему шести скалярных уравнений преобразовать к системе третьего порядка. Однако редуцированная система при указанном подходе будет иметь особенность в виде радикальных выражений относительно компонент вектора угловой скорости. Это обстоятельство препятствует эффективному применению численных и асимптотических методов исследования решения. Во втором подходе используют различные виды переменных задачи: углы Эйлера, переменные Гамильтона и другие. При таком подходе уравнения Эйлера–Пуассона редуцируются либо к системе дифференциальных уравнений второго порядка, либо к системе, для которой эффективны специальные методы. В статье применен метод нахождения приведенной системы, основанный на введении вспомогательной переменной. Эта переменная характеризует смешанное произведение вектора момента количества движения, вектора вертикали и единичного вектора барицентрической оси тела. Получена система четырех дифференциальных уравнений, два из которых являются линейными дифференциальными уравнениями. Данная система не имеет аналога и не содержит особенностей, что позволяет применять к ней аналитические и численные методы исследования. Указанная форма уравнений применена для анализа специального класса решений в случае, когда центр масс тела принадлежит барицентрической оси. Рассмотрен вариант, при котором сумма квадратов двух компонент вектора кинематического момента относительно небарицентрических осей постоянна. Доказано, что этот вариант имеет место только в решении В.А. Стеклова. Найденная форма уравнений Эйлера–Пуассона может быть применена к исследованию условий существования других классов решений. Определенная перспектива полученных уравнений состоит в записи всех решений, для которых центр масс лежит на барицентрической оси, в переменных данной статьи. Это позволяет провести классификацию решений уравнений Эйлера–Пуассона в зависимости от порядка инвариантных соотношений. Поскольку указанная в статье система уравнений не имеет особенностей, то она может рассматриваться при компьютерном моделировании с помощью численных методов.
A new form of differential equations in modeling of the motion of a heavy solid
Computer Research and Modeling, 2016, v. 8, no. 6, pp. 873-884Views (last year): 6.The different types of the reduced equations are known in the dynamics a heavy rigid body with a fixed point. Since the Euler−Poisson’s equations admit the three first integrals, then for the first approach the obtaining new forms of equations are usually based on these integrals. The system of six scalar equations can be transformed to a third-order system with them. However, in indicated approach the reduced system will have a feature as in the form of radical expressions a relatively the components of the angular velocity vector. This fact prevents the effective the effective application of numerical and asymptotic methods of solutions research. In the second approach the different types of variables in a problem are used: Euler’s angles, Hamilton’s variables and other variables. In this approach the Euler−Poisson’s equations are reduced to either the system of second-order differential equations, or the system for which the special methods are effective. In the article the method of finding the reduced system based on the introduction of an auxiliary variable is applied. This variable characterizes the mixed product of the angular momentum vector, the vector of vertical and the unit vector barycentric axis of the body. The system of four differential equations, two of which are linear differential equations was obtained. This system has no analog and does not contain the features that allows to apply to it the analytical and numerical methods. Received form of equations is applied for the analysis of a special class of solutions in the case when the center of mass of the body belongs to the barycentric axis. The variant in which the sum of the squares of the two components of the angular momentum vector with respect to not barycentric axes is constant. It is proved that this variant exists only in the Steklov’s solution. The obtained form of Euler−Poisson’s equations can be used to the investigation of the conditions of existence of other classes of solutions. Certain perspectives obtained equations consists a record of all solutions for which the center of mass is on barycentric axis in the variables of this article. It allows to carry out a classification solutions of Euler−Poisson’s equations depending on the order of invariant relations. Since the equations system specified in the article has no singularities, it can be considered in computer modeling using numerical methods.
-
Сверточные нейронные сети семейства YOLO для мобильных систем компьютерного зрения
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 615-631Работа посвящена анализу известных классов моделей сверточных нейронных сетей и исследованию выбранных из них перспективных моделей для детектирования летающих объектов на изображениях. Под детектированием объектов (англ. — Object Detection) здесь понимаются обнаружение, локализация в пространстве и классификация летающих объектов. Комплексное исследование выбранных перспективных моделей сверточных нейронных сетей проводится с целью выявления наиболее эффективных из них для создания мобильных систем компьютерного зрения реального времени. Показано, что наиболее приемлемыми для детектирования летающих объектов на изображениях с учетом сформулированных требований к мобильным системам компьютерного зрения реального времени и, соответственно, к лежащим в их основе моделям сверточных нейронных сетей являются модели семейства YOLO, причем наиболее перспективными следует считать пять моделей из этого семейства: YOLOv4, YOLOv4-Tiny, YOLOv4-CSP, YOLOv7 и YOLOv7-Tiny. Для обучения, валидации и комплексного исследования этих моделей разработан соответствующий набор данных. Каждое размеченное изображение из набора данных включает от одного до нескольких летающих объектов четырех классов: «птица», «беспилотный летательный аппарат самолетного типа», «беспилотный летательный аппарат вертолетного типа» и «неизвестный объект» (объекты в воздушном пространстве, не входящие в первые три класса). Исследования показали, что все модели сверточных нейронных сетей по скорости детектирования объектов на изображении (по скорости вычисления модели) значительно превышают заданное пороговое значение, однако только модели YOLOv4-CSP и YOLOv7, причем только частично, удовлетворяют требованию по точности детектирования (классификации) летающих объектов. Наиболее сложным для детектирования классом объектов является класс «птица». При этом выявлено, что наиболее эффективной по точности классификации является модель YOLOv7, модель YOLOv4-CSP на втором месте. Обе модели рекомендованы к использованию в составе мобильной системы компьютерного зрения реального времени при условии увеличения в созданном наборе данных числа изображений с объектами класса «птица» и дообучения этих моделей с тем, чтобы они удовлетворяли требованию по точности детектирования летающих объектов каждого из четырех классов.
Ключевые слова: детектирование летающих объектов на изображениях, сверточная нейронная сеть, YOLO, мобильная система компьютерного зрения.
Convolutional neural networks of YOLO family for mobile computer vision systems
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 615-631The work analyzes known classes of convolutional neural network models and studies selected from them promising models for detecting flying objects in images. Object detection here refers to the detection, localization in space and classification of flying objects. The work conducts a comprehensive study of selected promising convolutional neural network models in order to identify the most effective ones from them for creating mobile real-time computer vision systems. It is shown that the most suitable models for detecting flying objects in images, taking into account the formulated requirements for mobile real-time computer vision systems, are models of the YOLO family, and five models from this family should be considered: YOLOv4, YOLOv4-Tiny, YOLOv4-CSP, YOLOv7 and YOLOv7-Tiny. An appropriate dataset has been developed for training, validation and comprehensive research of these models. Each labeled image of the dataset includes from one to several flying objects of four classes: “bird”, “aircraft-type unmanned aerial vehicle”, “helicopter-type unmanned aerial vehicle”, and “unknown object” (objects in airspace not included in the first three classes). Research has shown that all convolutional neural network models exceed the specified threshold value by the speed of detecting objects in the image, however, only the YOLOv4-CSP and YOLOv7 models partially satisfy the requirements of the accuracy of detection of flying objects. It was shown that most difficult object class to detect is the “bird” class. At the same time, it was revealed that the most effective model is YOLOv7, the YOLOv4-CSP model is in second place. Both models are recommended for use as part of a mobile real-time computer vision system with condition of additional training of these models on increased number of images with objects of the “bird” class so that they satisfy the requirement for the accuracy of detecting flying objects of each four classes.
-
О Международной Пущинской школе-конференции молодых ученых «Биология – наука XXI века»
Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 41 -
Моделирование белок-белковых взаимодействий с применением программного комплекса многочастичной броуновской динамики ProKSim
Компьютерные исследования и моделирование, 2013, т. 5, № 1, с. 47-64Белок-белковые взаимодействия являются основой большинства биологических процессов. Компьютерное моделирование динамики связывания белков дает важную информацию для понимания механизмов их функционирования. Разработана компьютерная программа ProKSim (Protein Kinetics Simulator), предназначенная для моделирования взаимодействия макромолекул методом многочастичной броуновской динамики с учетом дальнодействующих электростатических взаимодействий. Проведено исследование диффузионно-столкновительных комплексов для трех пар белков: ферредоксин и ферредоксин:НАДФ+-редуктаза, пластоцианин и цитохром f, барназа и барстар. Исследована роль электростатических взаимодействий во взаимной ориентации молекул белков при образовании диффузионно-столкновительных комплексов.
Ключевые слова: многочастичная броуновская динамика, белок-белковые взаимодействия, механизмы молекулярного распознавания.
Multi-particle Brownian Dynamics software ProKSim for protein-protein interactions modeling
Computer Research and Modeling, 2013, v. 5, no. 1, pp. 47-64Views (last year): 4. Citations: 8 (RSCI).Protein-protein interactions are of central importance for virtually every process in living matter. Modeling the dynamics of protein association is crucial for understanding their functionality. This paper proposes novel simulation software ProKSim (Protein Kinetics Simulator) for modeling of protein interactions by means of the multi-particle Brownian Dynamics. Effect of long-range electrostatic interactions on the process of transient encounter complex formation is numerically estimated. Investigation of transient encounter complex formation was performed for three pairs of proteins: ferredoxin and ferredoxin:NADP+-redustase, plastocyanin and cytochrome f, barnase and barstar.
-
Моделирование термодесорбции и водородопроницаемости
Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 679-703В контексте проблем водородной и термоядерной энергетики ведутся интенсивные исследования свойств изотопов водорода. Математические модели позволяют уточнять физико-химические представления о взаимодействии водорода с конструкционными материалами, выделять лимитирующие факторы. Классических моделей диффузии часто недостаточно. Статья посвящена моделям и численному решению краевых задач термодесорбции и водородопроницаемости с учетом динамики нелинейных сорбционно-десорбционных процессов на поверхности и обратимого захвата атомов водорода в объеме. Алгоритмы основаны на разностных аппроксимациях. Представлены результаты компьютерного моделирования потока водорода из конструкционного материала.
Ключевые слова: взаимодействие водорода с твердым телом, поверхностные процессы, нелинейные динамические краевые задачи, численное моделирование.
Modeling of thermal desorption and hydrogen permeability
Computer Research and Modeling, 2014, v. 6, no. 5, pp. 679-703Views (last year): 3.In the context of problems of hydrogen and thermonuclear power engineering intensive research of the hydrogen isotopes properties is being conducted. Mathematical models help to specify physical-chemical ideas about the interaction of hydrogen isotopes with structural materials, to discover the limiting factors. Classical diffusion models are often insufficient. The paper is devoted to the models and numerical solution of the boundary-value problems of hydrogen thermodesorption and permeability taking into account nonlinear sorption-desorption dynamics on the surface and reversible capture of hydrogen atoms in the bulk. Algorithms based on difference approximations. The results of computer simulation of the hydrogen flux from a structural material sample are presented.
-
Анализ возможности использования программного комплекса FlowVision для исследования гидродинамических воздействий на возвращаемый аппарат и динамики его движения при посадке на воду
Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 47-55В данной работе представлены результаты верификации исследований гидродинамических воздействий на возвращаемый аппарат сегментально-конической формы при посадке на воду. Для анализа используется программный комплекс FlowVision. Целью работы является подтверждение возможности использования данного программного комплекса для решения поставленных задач на основе сравнения расчетных и экспериментальных данных, полученных на моделях посадочного модуля корабля Apollo и возвращаемого аппарата пилотируемого транспортного корабля нового поколения, разрабатываемого в РКК «Энергия». Сравнивались значения давлений на поверхности моделей аппаратов в процессе погружения в воду и параметры движения центра масс.
Показано хорошее согласование экспериментальных и расчетных данных по силовому действию на конструкцию аппарата при приводнении и параметрам его движения в водной среде. Компьютерное моделирование адекватно отражает влияние на процесс приводнения начальных скоростей и углов входа аппарата в водную среду.
Использование компьютерного моделирования обеспечивает одновременное определение всей информации, необходимой для исследования в процессе проектирования изделия особенностей посадки на воду: гидродинамические воздействия для расчета прочности конструкции, параметры и динамику движения центра масс и вращения аппарата вокруг центра масс с целью оценки условий приводнения экипажа, а также остойчивость аппарата после приводнения.
Полученные результаты подтверждают необходимость использования программного комплекса FlowVision для исследования процесса приводнения аппарата и исследований влияния различных режимов посадки в широком диапазоне изменения начальных условий, что позволяет существенно сократить объём дорогостоящих экспериментальных исследований и реализовать условия посадки, трудновоспроизводимые в физическом эксперименте.
Analysis of the possibility of investigation of hydrodynamic responses and landing dynamics of space module impacting water with FlowVision CFD software
Computer Research and Modeling, 2017, v. 9, no. 1, pp. 47-55Views (last year): 10.The results of verification carried out for investigations of hydrodynamic effect on reentry conicalsegmental space vehicle are presented in the paper. The program complex Flow Vision is used for this analysis. The purpose of the study is verification of using Flow Vision program complex for problem solving mentioned above on the base of comparison between calculated and experimental data, obtained on the Apollo landing models and new development reentry spacecraft of manned transporting spaceship designed by RSC Energia. The comparison was carried out through the data of pressure values on spacecraft model surfaces during its water landing and inertia center motion parameters.
The results of study show good agreement between experimental and calculated data of force effects on vehicle construction during water landing and its motion parameters in the water medium. Computer simulation sufficiently well reproduces influence of initial velocities & water entry angles variations on water landing process.
Using of computer simulation provides simultaneous acquisition of all data information needed for investigation of water landing peculiarities during construction design, notably, hydrodynamic effects for structural strength calculations, parameters and dynamics of center mass motion and vehicle revolution around center mass for estimation water landing conditions, as well as vehicle stability after landing.
Obtained results confirm suitability of using Flow Vision program complex for water landing vehicle investigations and investigations of influence of different landing regimes through wide initial condition change range, that permits considerably decrease extent of expensive experimental tests and realize landing conditions which are sufficiently complicated for realizing in model physical experiments.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




