Результаты поиска по 'математическая физика':
Найдено статей: 101
  1. Проведено математическое моделирование нестационарных режимов естественной конвекции в замкнутой пористой цилиндрической полости с теплопроводной оболочкой конечной толщины в условиях конвективного теплообмена с внешней средой. Краевая задача математической физики, сформулированная на основе модели Дарси–Буссинеска в безразмерных переменных «функция тока – температура», реализована численно методом конечных разностей. Детально проанализировано влияние проницаемости пористой среды 10–5≤Da<∞, отношения толщины твердой оболочки к внутреннему радиусу цилиндра 0.1≤h/L≤0.3, относительного коэффициента теплопроводности 1≤λ1,2≤20 и безразмерного времени 0≤τ≤1000 как на локальные распределения изолиний функции тока и температуры, так и на интегральные комплексы, отражающие интенсивность конвективного течения и теплопереноса.

    Trifonova T.A., Sheremet M.A.
    Numerical simulation of unsteady conjugate natural convection in a cylindrical porous domain (Darcy–Boussinesq model)
    Computer Research and Modeling, 2013, v. 5, no. 2, pp. 179-191

    Mathematical simulation on unsteady natural convection in a closed porous cylindrical cavity having finite thickness heat-conducting solid walls in conditions of convective heat exchange with an environment has been carried out. A boundary-value problem of mathematical physics formulated in dimensionless variables such as stream function and temperature on the basis of Darcy–Boussinesq model has been solved by finite difference method. Effect of a porous medium permeability 10–5≤Da<∞, ratio between a solid wall thickness and the inner radius of a cylinder 0.1≤h/L≤0.3, a thermal conductivity ratio 1≤λ1,2≤20 and a dimensionless time on both local distributions of isolines and isotherms and integral complexes reflecting an intensity of convective flow and heat transfer has been analyzed in detail.

    Views (last year): 4. Citations: 3 (RSCI).
  2. Моисеева К.М., Крайнов А.Ю.
    Влияние состава угольной пыли на скорость распространения фронта горения по аэровзвеси с неоднородным распределением частиц
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 221-230

    Задача горения газовзвеси с неоднородным распределением частиц по пространству возникает, например, при сжигании взвеси угольной пыли в камерах сгорания энергетических установок и горелок. Неоднородное распределение частиц по пространству может существенно повлиять на скорость распространения фронта пламени по аэровзвеси угольной пыли. Представляют интерес исследование закономерности распространения фронта горения в газовзвеси при неравномерном распределении концентрации реагирующих частиц в воздухе, а также определение зависимости скорости распространения фронта горения от свойств угольной пыли и неоднородности пространственного ее распределения. Целью настоящей работы является численное исследование влияния неоднородного распределения частиц, а также состава аэровзвеси на скорость распространения фронта горения по аэровзвеси угольной пыли.

    Разработана физико-математическая модель горения аэровзвеси угольной пыли с неоднородным распределением частиц угольной пыли по пространству. Физико-математическая постановка задачи учи- тывает выход горючих летучих компонентов из частиц при их нагреве, последующее реагирование летучих компонентов с воздухом, гетерогенную реакцию на поверхности частиц, зависимость коэффициента теплопроводности газа от температуры. Решение задачи проведено численно.

    Проведено параметрическое исследование влияния массовой концентрации, содержания летучих компонентов и размера частиц угольной пыли на скорость горения взвеси угольной пыли в воздухе. Показано, что скорость горения больше для частиц с меньшим содержанием летучих компонентов. Сравнение скорости горения для частиц разного радиуса показало, что чем больше радиус частиц, тем меньше скорость горения аэровзвеси. Определено, что частицы с большей массовой концентрацией горят быстрее.

    Проведен анализ влияния пространственного распределения частиц на скорость горения аэровзвеси. Показано, что скорость распространения фронта горения по аэровзвеси с неоднородным распределением частиц выше скорости распространения фронта горения по аэровзвеси с однородным распределением частиц. Показано, что неоднородное распределение частиц приводит к искривлению фронта горения. Чем меньше радиус частиц, тем сильнее искривляется фронт горения.

    The problem of the combustion of a gas suspension with an inhomogeneous distribution of particles over space occurs exists for the coal dust suspension combustion in combustion chambers and burners. The inhomogeneous distribution of particles in space can significantly affect the combustion velocity of the aerosolve of coal dust. The purpose of the present work is the numerically study the effect of the inhomogeneous distribution of particles and the composition of the coal dust on the combustion velocity of the coal dust in the air.

    The physical and mathematical model of combustion of air-coal dust mixture with an inhomogeneous distribution of coal dust particles over space has been developed. The physical and mathematical formulation of the problem took into account the release of combustible volatile components from the particles upon their heating, the subsequent reaction of volatile components with air, a heterogeneous reaction on the surface of the particles, and the dependence of the thermal conductivity of the gas on temperature.

    A parametric study was made of the effect of mass concentration, the content of volatile and the particle size of coal dust on the burning speed of a suspension of coal dust in the air. It is shown that the burning rate is greater for particles with a lower content of volatile components. The influence of the spatial distribution of particles on the burning rate of the coal-air mixture is analyzed. It is shown that the propagation velocity of the combustion front with respect to the suspension with an inhomogeneous particle distribution is higher than the propagation speed of the combustion front with respect to the suspension with a homogeneous particle distribution.

    Views (last year): 18.
  3. Представлена физико-математическая постановка сопряженной геометрической и газодинамической задачи моделирования внутрикамерных процессов и расчета основных внутрибаллистических характеристик ракетных двигателей на твердом топливе в осесимметричном приближении. Изложены основополагающие методики и численный алгоритм решения задачи. Отслеживание горящей поверхности топлива осуществлено неявным образом с помощью метода уровней на декартовой структурированной вычислительной сетке. Для расчета параметров течения использованы двумерные уравнения газовой динамики. Ввиду несогласованности границ области с узлами вычислительной сетки, в численных расчетах учтено наличие фиктивных точек, лежащих вне рассматриваемой области, но рядом с границей. Для задания значений параметров течения в фиктивных точках применена обратная процедура Лакса – Вендроффа, заключающаяся в построении экстраполяционного полинома, который учитывает как текущее распределение параметров, так и условия на границе. Численное решение полученной системы уравнений основано на использовании WENO-схем пятого и третьего порядка для дискретной аппроксимации по пространственной координате уравнений метода уровней и газовой динамики соответственно и применении методов Рунге – Кутты, обладающих свойством уменьшения полной вариации, для решения полученных полудискретных уравнений. Изложенный численный алгоритм распараллелен с использованием технологии CUDA и в дальнейшем оптимизирован с учетом особенностей архитектуры графических процессоров.

    Программный комплекс использован при расчетах внутрибаллистических характеристик бессоплового двигателя на твердом топливе в течение основного времени работы. На основе полученных численных результатов обсуждается эффективность распараллеливания с использованием технологии CUDA и применения рассмотренных оптимизаций. Показано, что применяемая методика распараллеливания приводит к значительному ускорению по сравнению с использованием центральных процессоров. Представлены распределения основных параметров течения продуктов сгорания в различные промежутки времени. Произведено сравнение полученных результатов квазиодномерного подхода и разработанной численной методики.

    Kiryushkin A.E., Minkov L.L.
    Parallel implementation of numerical algorithm of solving coupled internal ballistics modelling problem for solid rocket motors
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 47-65

    We present a physico-mathematical statement of coupled geometrical and gas dynamics problem of intrachamber processes simulation and calculation of main internal ballistics characteristics of solid rocket motors in axisymmetric approximation. Method and numerical algorithm of solving the problem are described in this paper. We track the propellant burning surface using the level set method. This method allows us to implicitly represent the surface on a fixed Cartesian grid as zero-level of some function. Two-dimensional gas-dynamics equations describe a flow of combustion products in a solid rocket motor. Due to inconsistency of domain boundaries and nodes of computational grid, presence of ghost points lying outside the computational domain is taken into account. For setting the values of flow parameters in ghost points, we use the inverse Lax – Wendroff procedure. We discretize spatial derivatives of level set and gas-dynamics equations with standard WENO schemes of fifth and third-order respectively and time derivatives using total variation diminishing Runge –Kutta methods. We parallelize the presented numerical algorithm using CUDA technology and further optimize it with regard to peculiarities of graphics processors architecture.

    Created software package is used for calculating internal ballistics characteristics of nozzleless solid rocket motor during main firing phase. On the base of obtained numerical results, we discuss efficiency of parallelization using CUDA technology and applying considered optimizations. It has been shown that implemented parallelization technique leads to a significant acceleration in comparison with central processes. Distributions of key parameters of combustion products flow in different periods of time have been presented in this paper. We make a comparison of obtained results between quasione-dimensional approach and developed numerical technique.

  4. Русяк И.Г., Тененев В.А., Суфиянов В.Г., Клюкин Д.А.
    Моделирование неравномерного горения и напряженно-деформированного состояния пороховых элементов трубчатого заряда при выстреле
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1281-1300

    Врабо те представлена физико-математическая постановка задач внутренней баллистики артиллерийского выстрела для заряда, состоящего из совокупности пороховых трубок, и их напряженно-деформированного состояния. Горение и движение пучка пороховых трубок по каналу ствола моделируются эквивалентным трубчатым зарядом всестороннего горения. Предполагается, что эквивалентная трубка движется по оси канала ствола. Скорость движения эквивалентного трубчатого заряда и его текущее положение определяются из второго закона Ньютона. При расчете параметров течения использованы двумерные осесимметричные уравнения газовой динамики, для решения которых строится осесимметричная ортогонализированная разностная сетка, адаптирующаяся к условиям течения. Для численного решения системы газодинамических уравнений применяется метод контрольного объема. Параметры газа на границах контрольных объемов определяются с использованием автомодельного решения задачи о распаде произвольного разрыва С. К. Годунова. Напряженно-деформированное состояние моделируется для отдельной горящей пороховой трубки, находящейся в поле нестационарных газодинамических параметров. Расчет газодинамических параметров выстрела осуществляется без учета деформированного состояния пороховых элементов. При данных условиях рассмотрено поведение пороховых элементов при выстреле. Для решения нестационарной задачи упругости используется метод конечных элементов с разбиением области расчета на треугольные элементы. В процессе выгорания пороховой трубки расчетная сетка на каждом временном слое динамической задачи полностью обновляется в связи с изменением границ порохового элемента за счет горения. Представлены временные зависимости параметров внутрибаллистического процесса и напряженно-деформированного состояния пороховых элементов, а также распределения основных параметров течения продуктов горения в различные моменты времени. Установлено, что трубчатые пороховые элементы в процессе выстрела испытывают существенные деформации, которые необходимо учитывать при решении основной задачи внутренней баллистики. Полученные данные дают представления об уровне эквивалентных напряжений, действующих в различных точках порохового элемента. Представленные результаты говорят об актуальности сопряженной постановки задачи газовой динамики и напряженно-деформированного состояния для зарядов, состоящих из трубчатых порохов, поскольку это позволяет по-новому подойти к проектированию трубчатых зарядов и открывает возможность определения параметров, от которых существенно зависят физика процесса горения пороха и, следовательно, динамика процесса выстрела.

    Rusyak I.G., Tenenev V.A., Sufiyanov V.G., Klyukin D.A.
    Simulation of uneven combustion and stress-strain state of powder elements of a tubular charge during firing
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1281-1300

    The paper presents the physical and mathematical formulation of the problems of internal ballistics of an artillery shot for a charge consisting of a set of powder tubes and their stress-strain state. Combustion and movement of a bundle of powder tubes along the barrel channel is modeled by an equivalent tubular charge of all-round combustion. It is assumed that the equivalent tube moves along the axis of the bore. The speed of movement of an equivalent tubular charge and its current position are determined from Newton’s second law. When calculating the flow parameters, two-dimensional axisymmetric equations of gas dynamics were used, for the solution of which an axisymmetric orthogonalized difference grid is constructed, which adapts to the flow conditions. The control volume method is used to numerically solve the system of gas-dynamic equations. The gas parameters at the boundaries of the control volumes are determined using a self-similar solution to the Godunov’s problem of the decay of an arbitrary discontinuity. The stress-strain state is modeled for a separate burning powder tube located in the field of gas-dynamic parameters. The calculation of the gas-dynamic parameters of the shot is carried out without taking into account the deformed state of the powder elements. The behavior of powder elements during firing is considered under these conditions. The finite element method with the division of the calculation area into triangular elements is used to solve the problem of elasticity. In the process of powder tube burnout, the computational grid on each time layer of the dynamic problem is completely updated due to a change in the boundaries of the powder element due to combustion. The paper shows the time dependences of the parameters of the internal ballistics process and the stress-strain state of powder elements, as well as the distribution of the main parameters of the flow of combustion products at different points in time. It has been established that the tubular powder elements during the shot experience significant deformations, which must be taken into account when solving the basic problem of internal ballistics. The data obtained give an idea of the level of equivalent stresses acting at various points of the powder element. The results obtained indicate the relevance of the conjugate formulation of the problem of gas dynamics and the stress-strain state for charges consisting of tubular powders, since this allows a new approach to the design of tubular charges and opens up the possibility of determining the parameters on which the physics of the combustion process of gunpowder significantly depends, therefore, and the dynamics of the shot process.

  5. Плетнев Н.В., Матюхин В.В.
    О модификации метода покомпонентного спуска для решения некоторых обратных задач математической физики
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 301-316

    Статья посвящена решению некорректно поставленных задач математической физики для эллиптических и параболических уравнений, а именно задачи Коши для уравнения Гельмгольца и ретроспективной задачи Коши для уравнения теплопроводности с постоянными коэффициентами. Эти задачи сводятся к задачам выпуклой оптимизации в гильбертовом пространстве. Градиенты соответствующих функционалов вычисляются приближенно с помощью решения двух корректных задач. Предлагается метод решения исследуемых задач оптимизации — покомпонентный спуск в базисе из собственных функций связанного с задачей самосопряженного оператора. Если бы было возможно точное вычисление градиента, то этот метод давал бы сколь угодно точное решение задачи в зависимости от количества рассматриваемых элементов базиса. В реальных случаях возникновение погрешностей при вычислениях приводит к нарушению монотонности, что требует применения рестартов и ограничивает достижимое качество. В работе приводятся результаты экспериментов, подтверждающие эффективность построенного метода. Определяется, что новый подход превосходит подходы, основанные на использовании градиентных методов оптимизации: он позволяет достичь лучшего качества решения при значительно меньшем расходе вычислительных ресурсов. Предполагается, что построенный метод может быть обобщен и на другие задачи.

    Pletnev N.V., Matyukhin V.V.
    On the modification of the method of component descent for solving some inverse problems of mathematical physics
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 301-316

    The article is devoted to solving ill-posed problems of mathematical physics for elliptic and parabolic equations, such as the Cauchy problem for the Helmholtz equation and the retrospective Cauchy problem for the heat equation with constant coefficients. These problems are reduced to problems of convex optimization in Hilbert space. The gradients of the corresponding functionals are calculated approximately by solving two well-posed problems. A new method is proposed for solving the optimization problems under study, it is component-by-component descent in the basis of eigenfunctions of a self-adjoint operator associated with the problem. If it was possible to calculate the gradient exactly, this method would give an arbitrarily exact solution of the problem, depending on the number of considered elements of the basis. In real cases, the inaccuracy of calculations leads to a violation of monotonicity, which requires the use of restarts and limits the achievable quality. The paper presents the results of experiments confirming the effectiveness of the constructed method. It is determined that the new approach is superior to approaches based on the use of gradient optimization methods: it allows to achieve better quality of solution with significantly less computational resources. It is assumed that the constructed method can be generalized to other problems.

  6. Черепанов В.В.
    Моделирование теплового поля неподвижных симметричных тел в разреженной низкотемпературной плазме
    Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 73-91

    В работе исследуется процесс самосогласованной релаксации области возмущений, созданных в разреженной бинарной низкотемпературной плазме неподвижным заряженным шаром или цилиндром с абсорбирующей поверхностью. Особенностью подобных задач является их самосогласованный кинетический характер, при котором нельзя отделить процессы переноса в фазовом пространстве и формирования электромагнитного поля. Представлена математическая модель, позволяющая описывать и анализировать состояние газа, электрическое и тепловое поле в окрестности тела. Многомерность кинетической формулировки создает определенные проблемы при численном решении, поэтому для задачи подобрана криволинейная система неголономных координат, которая минимизирует ее фазовое пространство, что способствует повышению эффективности численных методов. Для таких координат обоснована и проанализирована форма кинетического уравнения Власова. Для его решения использован вариант метода крупных частиц с постоянным форм-фактором. В расчетах применялась подвижная сетка, отслеживающая смещение в фазовом пространстве носителя функции распределения, что дополнительно уменьшило объем контролируемой области фазового пространства. Раскрыты ключевые детали модели и численного метода. Модель и метод реализованы в виде кода на языке Matlab. На примере решения задачи для шара показано наличие в возмущенной зоне существенного неравновесия и анизотропии в распределении частиц по скорости. По результатам расчетов представлены картины эволюции структуры функции распределения частиц, профилей основных макроскопических характеристик газа — концентрации, тока, температуры и теплового потока, характеристик электрического поля в возмущенной области. Установлен механизм разогрева притягивающихся частиц в возмущенной зоне и показаны некоторые важные особенности процесса формирования теплового потока. Получены результаты, хорошо объяснимые с физической точки зрения, что подтверждает адекватность модели и корректность работы программного инструмента. Отмечаются создание и апробация основы для разработки в перспективе инструментов решения и более сложных задач моделирования поведения ионизированных газов вблизи заряженных тел.

    Работа будет полезной специалистам в области математического моделирования, процессов тепло- и массообмена, физики низкотемпературной плазмы, аспирантам и студентам старших курсов, специализирующимся в указанных направлениях.

    Cherepanov V.V.
    Modeling the thermal field of stationary symmetric bodies in rarefied low-temperature plasma
    Computer Research and Modeling, 2025, v. 17, no. 1, pp. 73-91

    The work investigates the process of self-consistent relaxation of the region of disturbances created in a rarefied binary low-temperature plasma by a stationary charged ball or cylinder with an absorbing surface. A feature of such problems is their self-consistent kinetic nature, in which it is impossible to separate the processes of transfer in phase space and the formation of an electromagnetic field. A mathematical model is presented that makes it possible to describe and analyze the state of the gas, electric and thermal fields in the vicinity of the body. The multidimensionality of the kinetic formulation creates certain problems in the numerical solution, therefore a curvilinear system of nonholonomic coordinates was selected for the problem, which minimizes its phase space, which contributes to increasing the efficiency of numerical methods. For such coordinates, the form of the Vlasov kinetic equation has been justified and analyzed. To solve it, a variant of the large particle method with a constant form factor was used. The calculations used a moving grid that tracks the displacement of the distribution function carrier in the phase space, which further reduced the volume of the controlled region of the phase space. Key details of the model and numerical method are revealed. The model and the method are implemented as code in the Matlab language. Using the example of solving a problem for a ball, the presence of significant disequilibrium and anisotropy in the particle velocity distribution in the disturbed zone is shown. Based on the calculation results, pictures of the evolution of the structure of the particle distribution function, profiles of the main macroscopic characteristics of the gas — concentration, current, temperature and heat flow, and characteristics of the electric field in the disturbed region are presented. The mechanism of heating of attracted particles in the disturbed zone is established and some important features of the process of formation of heat flow are shown. The results obtained are well explainable from a physical point of view, which confirms the adequacy of the model and the correct operation of the software tool. The creation and testing of a basis for the development in the future of tools for solving more complex problems of modeling the behavior of ionized gases near charged bodies is noted.

    The work will be useful to specialists in the field of mathematical modeling, heat and mass transfer processes, lowtemperature plasma physics, postgraduate students and senior students specializing in the indicated areas.

  7. Кудряшова О.Б., Ворожцов А.Б., Михайлов Ю.М.
    Исследование возможности обнаружения следов опасных веществ на основе детекции паров
    Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 451-463

    В статье исследуется возможность обнаружения следов опасных веществ (взрывчатых и наркотических) на основе детекции их паров в воздухе. Актуальность работы обусловлена задачами противодействия террористическим угрозам и наркотрафику, где критически важно определять даже следовые количества веществ. Основное внимание уделено математическому моделированию испарения тонкого слоя вещества с поверхности, основанному на молекулярно-кинетической теории. Предложена универсальная модель, учитывающая физико-химические свойства веществ, температуру окружающей среды, адгезию к поверхности и начальную массу слоя. На основе уравнений Герца – Кнудсена – Ленгмюра и Клаузиуса – Клапейрона получены аналитические выражения для времени полного испарения, предельной массы паров и динамики процесса. Выявлен безразмерный параметр $\gamma$, определяющий предельные условия испарения. Показано, что адгезия вещества (коэффициент $\alpha$) влияет на скорость испарения, но не на конечную массу паров. Проведены расчеты для шести модельных веществ (TNT, RDX, PETN, амфетамин, кокаин, героин) с широким диапазоном свойств. Установлено, что при комнатной температуре и поверхностной концентрации 100 нг/см2 большинство веществ испаряются полностью, за исключением RDX, который остается на поверхности на 84%. Время испарения варьируется от долей секунды (амфетамин) до нескольких часов (героин). Для веществ с низкой летучестью определена максимальная масса, способная испариться при заданных условиях. Новизна работы заключается в разработке универсальной модели, применимой для широкого класса опасных веществ, и в выявлении ключевых параметров, определяющих процесс испарения. Полученные результаты позволяют оценить пределы обнаружения следов веществ методами, основанными на регистрации паров, и могут быть использованы при проектировании систем безопасности.

    Kudryashova O.B., Vorozhtsov A.B., Mikhailov Y.M.
    Study of the possibility of detecting traces of hazardous substances based on vapor detection
    Computer Research and Modeling, 2025, v. 17, no. 3, pp. 451-463

    The article investigates the possibility of detecting traces of hazardous substances (explosives and narcotics) based on the detection of their vapors in the air. The relevance of the study stems from the need to counter terrorist threats and drug trafficking, where identifying even trace amounts of substances is critical. The focus is on mathematical modeling of the evaporation of a thin substance layer from a surface, based on molecular kinetic theory. A universal model is proposed, accounting for the physicochemical properties of substances, ambient temperature, adhesion to the surface, and the initial mass of the layer. Using the Hertz – Knudsen – Langmuir and Clausius – Clapeyron equations, analytical expressions are derived for the complete evaporation time, maximum vapor mass, and process dynamics. A dimensionless parameter, $\gamma$, is identified, determining the limiting conditions for evaporation. It is shown that substance adhesion (coefficient $\alpha$) affects the evaporation rate but not the final vapor mass. Calculations were performed for six model substances (TNT, RDX, PETN, amphetamine, cocaine, heroin) with a wide range of properties. At room temperature and a surface concentration of 100 ng/cm2, most substances evaporate completely, except for RDX, which remains on the surface at 84%. Evaporation times range from fractions of a second (amphetamine) to several hours (heroin). For low-volatility substances, the maximum mass capable of evaporating under given conditions is determined. The novelty of the work lies in the development of a universal model applicable to a broad class of hazardous substances and in identifying key parameters governing the evaporation process. The results enable the estimation of detection limits for trace substances using vapor-based methods and can be applied in the design of security systems.

  8. Старостин И.Е., Быков В.И.
    К проблеме программной реализации потенциально-потокового метода описания физико-химических процессов
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 817-832

    В рамках современной неравновесной термодинамики (макроскопического подхода описания и математического моделирования динамики реальных физико-химических процессов) авторами был разработан потенциально-потоковый метод описания и математического моделирования этих процессов, применимый в общем случае реальных макроскопических физико-химических систем. В соответствии с этим методом описание и математическое моделирование этих процессов заключаются в определении через потенциалы взаимодействия термодинамических сил, движущих эти процессы, и кинетической матрицы, определяемой кинетическими свойствами рассматриваемой системы, которые, в свою очередь, определяют динамику протекания физико-химических процессов в этой системе под действием термо-динамических сил в ней. Зная термодинамические силы и кинетическую матрицу системы, определяются скорости протекания физико-химических процессов в системе, а через эти скорости согласно законам сохранения определяются скорости изменения ее координат состояния. Получается, таким образом, замкнутая система уравнений физико-химических процессов в системе. Зная потенциалы взаимодействия в системе, кинетические матрицы ее простых подсистем (отдельных процессов, сопряженных между собой и не сопряженных с другими процессами), коэффициенты, входящие в законы сохранения, начальное состояние рассматриваемой системы, внешние потоки в нее, можно получить полную динамику физико-химических процессов в этой системе. Однако в случае сложной физико-химической системы, в которой протекает большое количество физико-химических процессов, размерность системы уравнений этих процессов становится соответствующей. Отсюда возникает проблема автоматизации формирования описанной системы уравнений динамики физико-химических процессов в рассматриваемой системе. В настоящей статье разрабатывается архитектура библиотеки программных типов данных, реализующих заданную пользователем физико-химическую систему на уровне ее расчетной схемы (координат состояния системы, энергетических степеней свободы, физико-химических процессов, в ней протекающих, внешних потоков и взаимосвязи между этими перечисленными компонентами) и алгоритмов задания ссылок в этих типах данных, а также расчета описанных параметров системы.

    Starostin I.E., Bykov V.I.
    To the problem of program implementation of the potential-streaming method of description of physical and chemical process
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 817-832

    In the framework of modern non-equilibrium thermodynamics (macroscopic approach of description and mathematical modeling of the dynamics of real physical and chemical processes), the authors developed a potential- flow method for describing and mathematical modeling of real physical and chemical processes applicable in the general case of real macroscopic physicochemical systems. In accordance with the potential-flow method, the description and mathematical modeling of these processes consists in determining through the interaction potentials of the thermodynamic forces driving these processes and the kinetic matrix determined by the kinetic properties of the system in question, which in turn determine the dynamics of the course of physicochemical processes in this system under the influence of the thermodynamic forces in it. Knowing the thermodynamic forces and the kinetic matrix of the system, the rates of the flow of physicochemical processes in the system are determined, and according to these conservation laws the rates of change of its state coordinates are determined. It turns out in this way a closed system of equations of physical and chemical processes in the system. Knowing the interaction potentials in the system, the kinetic matrices of its simple subsystems (individual processes that are conjugate to each other and not conjugate with other processes), the coefficients entering into the conservation laws, the initial state of the system under consideration, external flows into the system, one can obtain a complete dynamics of physicochemical processes in the system. However, in the case of a complex physico-chemical system in which a large number of physicochemical processes take place, the dimension of the system of equations for these processes becomes appropriate. Hence, the problem arises of automating the formation of the described system of equations of the dynamics of physical and chemical processes in the system under consideration. In this article, we develop a library of software data types that implement a user-defined physicochemical system at the level of its design scheme (coordinates of the state of the system, energy degrees of freedom, physico-chemical processes, flowing, external flows and the relationship between these listed components) and algorithms references in these types of data, as well as calculation of the described system parameters. This library includes both program types of the calculation scheme of the user-defined physicochemical system, and program data types of the components of this design scheme (coordinates of the system state, energy degrees of freedom, physicochemical processes, flowing, external flows). The relationship between these components is carried out by reference (index) addressing. This significantly speeds up the calculation of the system characteristics, because faster access to data.

    Views (last year): 12.
  9. Кондратов Д.В., Кондратова Т.С., Попов В.С., Попова А.А.
    Моделирование гидроупругого отклика пластины, установленной на нелинейно-упругом основании и взаимодействующей с пульсирующим слоем жидкости
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 581-597

    В работе сформулирована математическая модель гидроупругих колебаний пластины на нелинейно-упрочняющемся основании, взаимодействующей с пульсирующим слоем вязкой жидкости. В предложенной модели, в отличие от известных, совместно учтены упругие свойства пластины, нелинейность ее основания, а также диссипативные свойства жидкости и инерция ее движения. Модель представлена системой уравнений двумерной задачи гидроупругости, включающей: уравнение динамики пластины Кирхгофа на упругом основании с жесткой кубической нелинейностью, уравнения Навье – Стокса, уравнение неразрывности, краевые условия для прогибов пластины, давления жидкости на торцах пластины, а также для скоростей движения жидкости на границах контакта жидкости и ограничивающих ее стенок. Исследование модели проведено методом возмущений с последующим использованием метода итерации для уравнений тонкого слоя вязкой жидкости. В результате определен закон распределения давления жидкости на поверхности пластины и осуществлен переход к интегро-дифференциальному уравнению изгибных гидроупругих колебаний пластины. Данное уравнение решено методом Бубнова – Галёркина с применением метода гармонического баланса для определения основного гидроупругого отклика пластины и фазового сдвига. Показано, что исходная задача может быть сведена к исследованию обобщенного уравнения Дуффинга, в котором коэффициенты при инерционных, диссипативных и жесткостных членах определяются физико-механическими параметрами исходной системы. Найдены основной гидроупругий отклик пластины и фазовый сдвиг, проведено их численное исследование при учете инерции движения жидкости и для ползущего движения жидкости при нелинейно- и линейно-упругом основании пластины. Результаты расчетов показали необходимостьу чета вязкости жидкости и инерции ее движения совместно с упругими свойствами пластины и ее основания как для нелинейных колебаний, так и для линейных колебаний пластины.

    Kondratov D.V., Tatiana K.S., Popov V.S., Popova A.A.
    Modelling hydroelastic response of a plate resting on a nonlinear foundation and interacting with a pulsating fluid layer
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 581-597

    The paper formulates a mathematical model for hydroelastic oscillations of a plate resting on a nonlinear hardening elastic foundation and interacting with a pulsating fluid layer. The main feature of the proposed model, unlike the wellknown ones, is the joint consideration of the elastic properties of the plate, the nonlinearity of elastic foundation, as well as the dissipative properties of the fluid and the inertia of its motion. The model is represented by a system of equations for a twodimensional hydroelasticity problem including dynamics equation of Kirchhoff’s plate resting on the elastic foundation with hardening cubic nonlinearity, Navier – Stokes equations, and continuity equation. This system is supplemented by boundary conditions for plate deflections and fluid pressure at plate ends, as well as for fluid velocities at the bounding walls. The model was investigated by perturbation method with subsequent use of iteration method for the equations of thin layer of viscous fluid. As a result, the fluid pressure distribution at the plate surface was obtained and the transition to an integrodifferential equation describing bending hydroelastic oscillations of the plate is performed. This equation is solved by the Bubnov –Galerkin method using the harmonic balance method to determine the primary hydroelastic response of the plate and phase response due to the given harmonic law of fluid pressure pulsation at plate ends. It is shown that the original problem can be reduced to the study of the generalized Duffing equation, in which the coefficients at inertial, dissipative and stiffness terms are determined by the physical and mechanical parameters of the original system. The primary hydroelastic response and phases response for the plate are found. The numerical study of these responses is performed for the cases of considering the inertia of fluid motion and the creeping fluid motion for the nonlinear and linearly elastic foundation of the plate. The results of the calculations showed the need to jointly consider the viscosity and inertia of the fluid motion together with the elastic properties of the plate and its foundation, both for nonlinear and linear vibrations of the plate.

  10. Крайнов А.Ю., Моисеева К.М., Палеев Д.Ю.
    Численное исследование сгорания полидисперсной газовзвеси угольной пыли в сферическом объеме
    Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 531-539

    Разработана физико-математическая модель горения полидисперсной реагирующей газовзвеси. Физико-математическая постановка задачи учитывала выход летучих компонентов из частиц при их нагреве, излучение от частиц в окружающую среду, теплоотдачу от газа в окружающую среду через боковую поверхность сферического объема, зависимость коэффициента теплопроводности газа от температуры. Учитывалась полидисперсность угольной пыли: задавалось число фракций N. Фракции подразделялись на инертные и реагирующие частицы нескольких размеров. В уравнении изменения плотности окислителя учитывался расход окислителя на две реакции: гетерогенную на поверхности частиц и гомогенную в газе. Экзотермические химические реакции в газе определялись по закону Аррениуса с кинетикой второго порядка. Гетерогенная реакция на частицах задавалась реакцией первого порядка. Задача решалась методом Рунге–Кутты–Мерсона с автоматическим выбором шага. Достоверность расчетов проверялась путем решения частных постановок задачи. Было выполнено численное исследование задачи при варьировании процентного содержания летучих и инертных частиц в угольной пыли, а так же суммарной массы частиц. Определено влияние процентного содержания летучих и инертных частиц на характер горения полидисперсной газовзвеси угольной пыли в метано-воздушной смеси. Результаты показали, что при малых массах угольной пыли увеличение процентного содержания летучих частиц в смеси приводит к увеличению максимального давления в объеме. При больших массах угольной пыли с увеличением процентного содержания летучих частиц в пыли величина максимального давления уменьшается. Увеличение процентного содержания инертных частиц в смеси приводит к уменьшению максимального давления, достигаемого в системе. Было определено, что существует экстремальное значение радиуса крупных частиц, для которого достигается наибольшее давление в объеме.

    Krainov A.Y., Moiseeva K.M., Paleev D.Y.
    Numerical simulation of combustion of a polydisperse suspension of coal dust in a spherical volume
    Computer Research and Modeling, 2016, v. 8, no. 3, pp. 531-539

    The physical and mathematical model of combustion of the polydisperse suspension of coal dust was developed. The formulation of the problem takes into account the evaporation of particle volatile components during the heating, the particle emitting and the gas heat transfer to a surrounding area via the sphere volume side surface, heat transfer coefficient as a function of temperature. The polydisperse of coal-dust is taken into consideration. N — the number of fraction. Fractions are subdivided into inert and reacting particles. The oxidizer mass balance equation takes into consideration the oxidizer consumption per each reaction (heterogeneous on the particle surface and homogenous in the gas). Exothermic chemical reactions in gas are determined by Arrhenius equation with second-order kinetics. The heterogeneous reaction on the particle surface was first-order reaction. The numerical simulation was solved by Runge–Kutta–Merson method. Reliability of the calculations was verified by solving the partial problems. During the numerical calculation the percentage composition of inert and reacting particles in coal-dust and their total mass were changed for each simulation. We have determined the influence of the percentage composition of inert and reacting particles on burning characteristics of polydisperse coal-dust methane-air mixture. The results showed that the percent increase of volatile components in the mixture lead to the increase of total pressure in the volume. The value of total pressure decreases with the increasing of the inert components in the mixture. It has been determined that there is the extremism radius value of coarse particles by which the maximum pressure reaches the highest value.

    Views (last year): 2. Citations: 7 (RSCI).
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"