All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Метод тяжелого шарика с усреднением
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 277-308Методы оптимизации первого порядка являются важным рабочим инструментов для широкого спектра современных приложений в разных областях, среди которых можно выделить экономику, физику, биологию, машинное обучение и управление. Среди методов первого порядка особого внимания заслуживают ускоренные (моментные) методы в силу их практической эффективности. Метод тяжелого шарика (heavy-ball method — HB) — один из первых ускоренных методов. Данный метод был разработан в 1964 г., и для него был проведен анализ сходимости для квадратичных сильно выпуклых функций. С тех пор были предложены и проанализированы разные варианты HB. В частности, HB известен своей простотой реализации и эффективностью при решении невыпуклых задач. Однако, как и другие моментные методы, он имеет немонотонное поведение; более того, при сходимости HB с оптимальными параметрами наблюдается нежелательное явление, называемое пик-эффектом. Чтобы решить эту проблему, в этой статье мы рассматриваем усредненную версию метода тяжелого шарика (averaged heavy-ball method — AHB). Мы показываем, что для квадратичных задач AHB имеет меньшее максимальное отклонение от решения, чем HB. Кроме того, для общих выпуклых и сильно выпуклых функций доказаны неускоренные скорости глобальной сходимости AHB, его версии WAHB cо взвешенным усреднением, а также для AHB с рестартами R-AHB. Насколько нам известно, такие гарантии для HB с усреднением не были явно доказаны для сильно выпуклых задач в существующих работах. Наконец, мы проводим несколько численных экспериментов для минимизации квадратичных и неквадратичных функций, чтобы продемонстрировать преимущества использования усреднения для HB. Кроме того, мы также протестировали еще одну модификацию AHB, называемую методом tail-averaged heavy-ball (TAHB). В экспериментах мы наблюдали, что HB с правильно настроенной схемой усреднения сходится быстрее, чем HB без усреднения, и имеет меньшие осцилляции.
Ключевые слова: методы первого порядка, выпуклая оптимизация, ускоренные градиентные методы, глобальная сходимость.First-order optimization methods are workhorses in a wide range of modern applications in economics, physics, biology, machine learning, control, and other fields. Among other first-order methods accelerated and momentum ones obtain special attention because of their practical efficiency. The heavy-ball method (HB) is one of the first momentum methods. The method was proposed in 1964 and the first analysis was conducted for quadratic strongly convex functions. Since then a number of variations of HB have been proposed and analyzed. In particular, HB is known for its simplicity in implementation and its performance on nonconvex problems. However, as other momentum methods, it has nonmonotone behavior, and for optimal parameters, the method suffers from the so-called peak effect. To address this issue, in this paper, we consider an averaged version of the heavy-ball method (AHB). We show that for quadratic problems AHB has a smaller maximal deviation from the solution than HB. Moreover, for general convex and strongly convex functions, we prove non-accelerated rates of global convergence of AHB, its weighted version WAHB, and for AHB with restarts R-AHB. To the best of our knowledge, such guarantees for HB with averaging were not explicitly proven for strongly convex problems in the existing works. Finally, we conduct several numerical experiments on minimizing quadratic and nonquadratic functions to demonstrate the advantages of using averaging for HB. Moreover, we also tested one more modification of AHB called the tail-averaged heavy-ball method (TAHB). In the experiments, we observed that HB with a properly adjusted averaging scheme converges faster than HB without averaging and has smaller oscillations.
-
О модификации метода покомпонентного спуска для решения некоторых обратных задач математической физики
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 301-316Статья посвящена решению некорректно поставленных задач математической физики для эллиптических и параболических уравнений, а именно задачи Коши для уравнения Гельмгольца и ретроспективной задачи Коши для уравнения теплопроводности с постоянными коэффициентами. Эти задачи сводятся к задачам выпуклой оптимизации в гильбертовом пространстве. Градиенты соответствующих функционалов вычисляются приближенно с помощью решения двух корректных задач. Предлагается метод решения исследуемых задач оптимизации — покомпонентный спуск в базисе из собственных функций связанного с задачей самосопряженного оператора. Если бы было возможно точное вычисление градиента, то этот метод давал бы сколь угодно точное решение задачи в зависимости от количества рассматриваемых элементов базиса. В реальных случаях возникновение погрешностей при вычислениях приводит к нарушению монотонности, что требует применения рестартов и ограничивает достижимое качество. В работе приводятся результаты экспериментов, подтверждающие эффективность построенного метода. Определяется, что новый подход превосходит подходы, основанные на использовании градиентных методов оптимизации: он позволяет достичь лучшего качества решения при значительно меньшем расходе вычислительных ресурсов. Предполагается, что построенный метод может быть обобщен и на другие задачи.
Ключевые слова: обратные задачи, выпуклая оптимизация, оптимизация в гильбертовом пространстве, методы первого порядка, покомпонентный спуск, неточный оракул.
On the modification of the method of component descent for solving some inverse problems of mathematical physics
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 301-316The article is devoted to solving ill-posed problems of mathematical physics for elliptic and parabolic equations, such as the Cauchy problem for the Helmholtz equation and the retrospective Cauchy problem for the heat equation with constant coefficients. These problems are reduced to problems of convex optimization in Hilbert space. The gradients of the corresponding functionals are calculated approximately by solving two well-posed problems. A new method is proposed for solving the optimization problems under study, it is component-by-component descent in the basis of eigenfunctions of a self-adjoint operator associated with the problem. If it was possible to calculate the gradient exactly, this method would give an arbitrarily exact solution of the problem, depending on the number of considered elements of the basis. In real cases, the inaccuracy of calculations leads to a violation of monotonicity, which requires the use of restarts and limits the achievable quality. The paper presents the results of experiments confirming the effectiveness of the constructed method. It is determined that the new approach is superior to approaches based on the use of gradient optimization methods: it allows to achieve better quality of solution with significantly less computational resources. It is assumed that the constructed method can be generalized to other problems.
-
Моделирование разделения смеси газов в многоступенчатом микронасосе, основанное на решении уравнения Больцмана
Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1417-1432В работе проводятся моделирование смеси газов в многокаскадном микронасосе и оценка его эффективности при разделении компонентов смеси. Рассматривается устройство в виде протяженного канала с последовательностью поперечно расположенных пластин, различие температур сторон которых приводит к радиометрическому течению газа внутри. Скорость течения газов зависит от их масс, что приводит к разделению смеси. Моделирование основывается на численном решении кинетического уравнения Больцмана, для чего используется схема расщепления, при которой поочередно осуществляются решения уравнений переноса и задач релаксации. Вычисление интеграла столкновений осуществляется с помощью консервативного проекционного метода, при использовании которого строго выполняются законы сохранения массы, импульса и энергии, и важное асимптотическое свойство — равенство интеграла от максвелловской функции нулю. Для решения уравнения переноса используются явная разностная схема первого порядка точности и TVD-схема второго порядка. Расчеты проводятся для смеси неона и аргона в модели твердых сфер с реальным отношением молекулярных диаметров и масс. Разработана программно-моделирующая среда, которая позволяет проводить расчеты как на персональных компьютерах, так и на многопроцессорных кластерах. Использование распараллеливания приводит к ускорению вычислений относительно последовательной версии и постоянству времени одной итерации для устройств разных размеров, что позволило моделировать системы с большим числом пластин. Подобраны геометрические размеры устройства, при которых разделения смеси оказывается наибольшим. Обнаружено, что величина разделения смеси, то есть отношение концентраций на концах устройства линейно зависит от числа каскадов в устройстве, что дает возможность оценить разделение для многокаскадных систем, компьютерное моделирование которых невозможно. Построены изображения и проведен анализ течений и распределений концентраций газов внутри устройства во время его работы. Показано, что устройства такого вида при достаточно большом числе пластин подходят для разделения газовых смесей, притом что они не имеют движущихся частей и, соответственно, достаточно просты в изготовлении и мало подвержены износу.
Ключевые слова: разреженный газ, смесь газов, кинетическое уравнение Больцмана, консервативный проекционный метод, численное моделирование.
Modeling of gas mixture separation in a multistage micropump based on the solution of the Boltzmann equation
Computer Research and Modeling, 2024, v. 16, no. 6, pp. 1417-1432The paper simulates a mixture of gases in a multi-stage micro-pump and evaluates its effectiveness at separating the components of the mixture. A device in the form of a long channel with a series of transverse plates is considered. A temperature difference between the sides of the plates induces a radiometric gas flow within the device, and the differences in masses of the gases lead to differences in flow velocities and to the separation of the mixture. Modeling is based on the numerical solution of the Boltzmann kinetic equation, for which a splitting scheme is used, i. e., the advection equation and the relaxation problem are solved separately in alternation. The calculation of the collision integral is performed using the conservative projection method. This method ensures the strict fulfillment of the laws of conservation of mass, momentum, and energy, as well as the important asymptotic property of the equality of the integral of the Maxwell function to zero. Explicit first-order and second-order TVD-schemes are used to solve the advection equation. The calculations were performed for a neon-argon mixture using a model of solid spheres with real molecular diameters and masses. Software has been developed to allow calculations on personal computers and cluster systems. The use of parallelization leads to faster computation and constant time per iteration for devices of different sizes, enabling the modeling of large particle systems. It was found that the value of mixture separation, i. e. the ratio of densities at the ends of the device linearly depends on the number of cascades in the device, which makes it possible to estimate separation for multicascade systems, computer modeling of which is impossible. Flows and distributions of gas inside the device during its operation were analyzed. It was demonstrated that devices of this kind with a sufficiently large number of plates are suitable for the separation of gas mixtures, given that they have no moving parts and are quite simple in manufacture and less subject to wear.
-
Волновые и релаксационные эффекты при истечении газовзвеси, частично заполняющей цилиндрический канал
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1495-1506Работа посвящена изучению волновых и релаксационных эффектов при импульсном истечении смеси газа с большим содержанием твердых частиц из цилиндрического канала при его начальном частичном заполнении. Задача сформулирована в двухскоростной двухтемпературной постановке и решалась численно гибридным методом крупных частиц второго порядка аппроксимации. Численный алгоритм реализован в виде параллельных вычислений с использованием базовых языковых средств Free Pascal. Применимость и точность метода для волновых потоков концентрированных газовзвесей подтверждены сопоставлением с тестовыми асимптотически точными решениями. Погрешность расчета на сетке невысокой детализации вх арактерных зонах течения двухфазной среды составила 10−6 . . . 10−5.
На основе волновой диаграммы выполнен анализ физической картины истечении газовзвеси, частично заполняющей цилиндрический канал. Установлено, что в зависимости от степени начального заполнения канала формируются различные режимы истечения. Первый режим реализуется при небольшой степени загрузки камеры высокого давления, при которой левая граница смеси газа и частиц пересекает выходное сечение до прихода отраженной от дна канала волны разрежения. При этом достигается максимальное значение массового расхода смеси. Другие режимы формируются в случаях большего начального заполнения канала, когда отраженные от дна канала волны разрежения взаимодействуют со слоем газовзвеси и уменьшают интенсивность ее истечения.
Изучено влияние релаксационных свойств при изменении размеров частиц на динамику ограниченного слоя газодисперсной среды. Сопоставление истечения ограниченного слоя газовзвеси с различными размерами частиц показывает, что для мелких частиц (число Стокса меньше 0,001) наблюдается аномальное явление одновременного существования ударно-волновых структур в сверх- и дозвуковом потоке газа и взвеси. С увеличением размеров дисперсных включений скачки уплотнения в области двухфазной смеси сглаживаются, а для частиц (число Стокса больше 0,1) — практически исчезают. При этом ударно-волновая конфигурация сверхзвукового газового потока на выходе из канала сохраняется, а положения и границы энергонесущих объемов газовзвеси при изменении размеров частиц близки.
Wave and relaxation effects during the outflow of a gas suspension partially filling a cylindrical channel
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1495-1506The paper is devoted to the study of wave and relaxation effects during the pulsed outflow of a gas mixture with a high content of solid particles from a cylindrical channel during its initial partial filling. The problem is formulated in a two-speed two-temperature formulation and was solved numerically by the hybrid large-particle method of the second order of approximation. The numerical algorithm is implemented in the form of parallel computing using basic Free Pascal language tools. The applicability and accuracy of the method for wave flows of concentrated gas-particles mixtures is confirmed by comparison with test asymptotically accurate solutions. The calculation error on a grid of low detail in the characteristic flow zones of a two-phase medium was 10-6 . . . 10-5.
Based on the wave diagram, the analysis of the physical pattern of the outflow of a gas suspension partially filling a cylindrical channel is performed. It is established that, depending on the degree of initial filling of the channel, various outflow modes are formed. The first mode is implemented with a small degree of loading of the high-pressure chamber, at which the left boundary of the gas-particles mixture crosses the outlet section before the arrival of the rarefaction wave reflected from the bottom of the channel. At the same time, the maximum value of the mass flow rate of the mixture is achieved. Other modes are formed in cases of a larger initial filling of the channel, when the rarefaction waves reflected from the bottom of the channel interact with the gas suspension layer and reduce the intensity of its outflow.
The influence of relaxation properties with changing particle size on the dynamics of a limited layer of a gas-dispersed medium is studied. Comparison of the outflow of a limited gas suspension layer with different particle sizes shows that for small particles (the Stokes number is less than 0.001), an anomalous phenomenon of the simultaneous existence of shock wave structures in the supersonic and subsonic flow of gas and suspension is observed. With an increase in the size of dispersed inclusions, the compaction jumps in the region of the two-phase mixture are smoothed out, and for particles (the Stokes number is greater than 0.1), they practically disappear. At the same time, the shock-wave configuration of the supersonic gas flow at the outlet of the channel is preserved, and the positions and boundaries of the energy-carrying volumes of the gas suspension are close when the particle sizes change.
-
Численное решение интегро-дифференциальных уравнений влагопереноса дробного порядка с оператором Бесселя
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 353-373В работе рассматриваются интегро-дифференциальные уравнения влагопереноса дробного порядка с оператором Бесселя. Изучаемые уравнения содержат оператор Бесселя, два оператора дробного дифференцирования Герасимова – Капуто с разными порядками $\alpha$ и $\beta$. Рассмотрены два вида интегро-дифференциальных уравнений: в первом случае уравнение содержит нелокальный источник, т.е. интеграл от неизвестной функции по переменной интегрирования $x$, а во втором — случае интеграл по временной переменной $\tau$, обозначающий эффект памяти. Подобные задачи возникают при изучении процессов с предысторией. Для решения дифференциальных задач при различных соотношениях $\alpha$ и $\beta$ получены априорные оценки в дифференциальной форме, откуда следуют единственность и устойчивость решения по правой части и начальным данным. Для приближенного решения поставленных задач построены разностные схемы с порядком аппроксимации $O(h^2+\tau^2)$ при $\alpha=\beta$ и $O(h^2+\tau^{2-\max\{\alpha,\beta\}})$ при $\alpha\neq\beta$. Исследование единственности, устойчивости и сходимости решения проводится с помощью метода энергетических неравенств. Получены априорные оценки решений разностных задач при различных соотношениях $\alpha$ и $\beta$, откуда следуют единственность и устойчивость, а также сходимость решения разностной схемы к решению исходной дифференциальной задачи со скоростью равной порядку аппроксимации разностной схемы.
Ключевые слова: уравнение влагопереноса, интегро-дифференциальное уравнение, разностные схемы, оператор Бесселя, априорная оценка, устойчивость, сходимость.
Numerical solution of integro-differential equations of fractional moisture transfer with the Bessel operator
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 353-373The paper considers integro-differential equations of fractional order moisture transfer with the Bessel operator. The studied equations contain the Bessel operator, two Gerasimov – Caputo fractional differentiation operators with different orders $\alpha$ and $\beta$. Two types of integro-differential equations are considered: in the first case, the equation contains a non-local source, i.e. the integral of the unknown function over the integration variable $x$, and in the second case, the integral over the time variable τ, denoting the memory effect. Similar problems arise in the study of processes with prehistory. To solve differential problems for different ratios of $\alpha$ and $\beta$, a priori estimates in differential form are obtained, from which the uniqueness and stability of the solution with respect to the right-hand side and initial data follow. For the approximate solution of the problems posed, difference schemes are constructed with the order of approximation $O(h^2+\tau^2)$ for $\alpha=\beta$ and $O(h^2+\tau^{2-\max\{\alpha,\beta\}})$ for $\alpha\neq\beta$. The study of the uniqueness, stability and convergence of the solution is carried out using the method of energy inequalities. A priori estimates for solutions of difference problems are obtained for different ratios of $\alpha$ and $\beta$, from which the uniqueness and stability follow, as well as the convergence of the solution of the difference scheme to the solution of the original differential problem at a rate equal to the order of approximation of the difference scheme.
-
Aнализ упрощения разностных схем для уравнения Ланжевена, влияние учета корреляции приращений
Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 325-338Исследованы пути упрощения разностных схем интегрирования уравнения Ланжевена варьированием коэффициента корреляции приращений. Для семейства численных методов получено общее аналитическое выражение для координаты и скорости. Показано, что асимптотическое значение среднего квадрата скорости для ряда разностных схем зависит от размера шага. Оценивается область применимости численных методов, а также соотношение между порядками сходимости. Выявлено, что без точного учета скоррелированности приращений разностная схема, построенная на точном решении, имеет ошибку, сравнимую с методами первого порядка.
Ключевые слова: диффузия, уравнение Ланжевена, стохастические дифференциальные уравнения, корреляция, порядок сходимости.
Analysis of simplifications of numerical schemes for Langevin equation, effect of variations in the correlation of augmentations
Computer Research and Modeling, 2012, v. 4, no. 2, pp. 325-338Views (last year): 5. Citations: 4 (RSCI).The possibility to simplify the integration of Langevin equation using the variation of correlation between augmentation was researched. The analytical expression for a set of numerical schemes is presented. It’s shown that asymptotic limits for squared velocity depend on step size. The region of convergence and the convergence orders were estimated. It turned out that the incorrect correlation between increments decrease the accuracy down to the level of first-order methods for schemes based on precise solution.
-
Численное исследование сгорания полидисперсной газовзвеси угольной пыли в сферическом объеме
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 531-539Разработана физико-математическая модель горения полидисперсной реагирующей газовзвеси. Физико-математическая постановка задачи учитывала выход летучих компонентов из частиц при их нагреве, излучение от частиц в окружающую среду, теплоотдачу от газа в окружающую среду через боковую поверхность сферического объема, зависимость коэффициента теплопроводности газа от температуры. Учитывалась полидисперсность угольной пыли: задавалось число фракций N. Фракции подразделялись на инертные и реагирующие частицы нескольких размеров. В уравнении изменения плотности окислителя учитывался расход окислителя на две реакции: гетерогенную на поверхности частиц и гомогенную в газе. Экзотермические химические реакции в газе определялись по закону Аррениуса с кинетикой второго порядка. Гетерогенная реакция на частицах задавалась реакцией первого порядка. Задача решалась методом Рунге–Кутты–Мерсона с автоматическим выбором шага. Достоверность расчетов проверялась путем решения частных постановок задачи. Было выполнено численное исследование задачи при варьировании процентного содержания летучих и инертных частиц в угольной пыли, а так же суммарной массы частиц. Определено влияние процентного содержания летучих и инертных частиц на характер горения полидисперсной газовзвеси угольной пыли в метано-воздушной смеси. Результаты показали, что при малых массах угольной пыли увеличение процентного содержания летучих частиц в смеси приводит к увеличению максимального давления в объеме. При больших массах угольной пыли с увеличением процентного содержания летучих частиц в пыли величина максимального давления уменьшается. Увеличение процентного содержания инертных частиц в смеси приводит к уменьшению максимального давления, достигаемого в системе. Было определено, что существует экстремальное значение радиуса крупных частиц, для которого достигается наибольшее давление в объеме.
Numerical simulation of combustion of a polydisperse suspension of coal dust in a spherical volume
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 531-539Views (last year): 2. Citations: 7 (RSCI).The physical and mathematical model of combustion of the polydisperse suspension of coal dust was developed. The formulation of the problem takes into account the evaporation of particle volatile components during the heating, the particle emitting and the gas heat transfer to a surrounding area via the sphere volume side surface, heat transfer coefficient as a function of temperature. The polydisperse of coal-dust is taken into consideration. N — the number of fraction. Fractions are subdivided into inert and reacting particles. The oxidizer mass balance equation takes into consideration the oxidizer consumption per each reaction (heterogeneous on the particle surface and homogenous in the gas). Exothermic chemical reactions in gas are determined by Arrhenius equation with second-order kinetics. The heterogeneous reaction on the particle surface was first-order reaction. The numerical simulation was solved by Runge–Kutta–Merson method. Reliability of the calculations was verified by solving the partial problems. During the numerical calculation the percentage composition of inert and reacting particles in coal-dust and their total mass were changed for each simulation. We have determined the influence of the percentage composition of inert and reacting particles on burning characteristics of polydisperse coal-dust methane-air mixture. The results showed that the percent increase of volatile components in the mixture lead to the increase of total pressure in the volume. The value of total pressure decreases with the increasing of the inert components in the mixture. It has been determined that there is the extremism radius value of coarse particles by which the maximum pressure reaches the highest value.
-
Градиентный метод с неточным оракулом для задач композитной невыпуклой оптимизации
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 321-334В этой статье мы предлагаем новый метод первого порядка для композитных невыпуклых задач минимизации с простыми ограничениями и неточным оракулом. Целевая функция задается как сумма «сложной», возможно, невыпуклой части с неточным оракулом и «простой» выпуклой части. Мы обобщаем понятие неточного оракула для выпуклых функций на случай невыпуклых функций. Неформально говоря, неточность оракула означает, что для «сложной» части в любой точке можно приближенно вычислить значение функции и построить квадратичную функцию, которая приближенно ограничивает эту функцию сверху. Рассматривается два возможных типа ошибки: контролируемая, которая может быть сде- лана сколь угодно маленькой, например, за счет решения вспомогательной задачи, и неконтролируемая. Примерами такой неточности являются: гладкие невыпуклые функции с неточным и непрерывным по Гёльдеру градиентом, функции, заданные вспомогательной равномерно вогнутой задачей максимизации, которая может быть решена лишь приближенно. Для введенного класса задачм ы предлагаем метод типа проекции градиента / зеркального спуска, который позволяет использовать различные прокс-функции для задания неевклидовой проекции на допустимое множество и более гибкой адаптации к геометрии допустимого множества; адаптивно выбирает контролируемую ошибку оракула и ошибку неевклидового проектирования; допускает неточное проксимальное отображение с двумя типами ошибки: контролируемой и неконтролируемой. Мы доказываем скорость сходимости нашего метода в терминах нормы обобщенного градиентного отображения и показываем, что в случае неточного непрерывного по Гёльдеру градиента наш метод является универсальным по отношению к параметру и константе Гёльдера. Это означает, что методу не нужно знание этих параметров для работы. При этом полученная оценка сложности является равномерно наилучшей при всех параметрах Гёльдера. Наконец, в частном случае показано, что малое значение нормы обобщенного градиентного отображения в точке означает, что в этой точке приближенно выполняется необходимое условие локального минимума.
Ключевые слова: невыпуклая оптимизация, композитная оптимизация, неточный оракул, непрерывный по Гёльдеру градиент, универсальный градиентный метод.
A gradient method with inexact oracle for composite nonconvex optimization
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 321-334In this paper, we develop a new first-order method for composite nonconvex minimization problems with simple constraints and inexact oracle. The objective function is given as a sum of «hard», possibly nonconvex part, and «simple» convex part. Informally speaking, oracle inexactness means that, for the «hard» part, at any point we can approximately calculate the value of the function and construct a quadratic function, which approximately bounds this function from above. We give several examples of such inexactness: smooth nonconvex functions with inexact H¨older-continuous gradient, functions given by the auxiliary uniformly concave maximization problem, which can be solved only approximately. For the introduced class of problems, we propose a gradient-type method, which allows one to use a different proximal setup to adapt to the geometry of the feasible set, adaptively chooses controlled oracle error, allows for inexact proximal mapping. We provide a convergence rate for our method in terms of the norm of generalized gradient mapping and show that, in the case of an inexact Hölder-continuous gradient, our method is universal with respect to Hölder parameters of the problem. Finally, in a particular case, we show that the small value of the norm of generalized gradient mapping at a point means that a necessary condition of local minimum approximately holds at that point.
-
О миграции популяции по экологической нише с пространственно неоднородной локальной емкостью
Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 483-500Статья посвящена описанию процесса миграции некоторой популяции с учетом пространственной неоднородности локальной емкости экологической ниши. Предполагается, что эта пространственная неоднородность обусловлена различными природными или искусственными факторами. Математическая модель рассматриваемого процесса миграции представляет собой задачу Коши на прямой для некоторого квазилинейного уравнения в частных производных первого порядка, которому удовлетворяет линейная плотность численности рассматриваемой популяции. В данной работе найдено общее решение этой задачи Коши для произвольной зависимости локальной емкости экологической ниши от пространственной координаты. Это общее решение было применено для описания миграции рассматриваемой популяции в двух различных случаях: в случае зависимости локальной емкости экологической ниши от пространственной координаты в виде гладкой ступеньки и в случае холмообразной зависимости локальной емкости экологической ниши от пространственной координаты. В обоих случаях решение задачи Коши выражается через высшие трансцендентные функции. Наложением специальных соотношений на параметры модели эти высшие трансцендентные функции сводятся к элементарным функциям, что позволяет получить точные решения модели в явном виде, выраженные через элементарные функции. С помощью этих точных решений реализована обширная программа вычислительных экспериментов, показывающих, как начальная плотность популяции гауссовской формы рассеивается на рассмотренных двух видах пространственной неоднородности локальной емкости экологической ниши. Эти вычислительные эксперименты показали, что при прохождении и через ступенеобразную, и через холмообразную пространственную неоднородность локальной емкости экологической ниши с узкой, по сравнению с характерным пространственным масштабом этих неоднородностей, шириной гауссоиды ее начальной плотности система забывает свое начальное состояние. В частности, если интерпретировать исследуемую систему как популяцию, обитающую в протяженной спокойной прямолинейной реке вдоль ее русла, то можно утверждать, что при таком начальном условии после того, как течение этой реки пронесет рассматриваемую популяцию через область пространственной неоднородности локальной емкости экологической ниши, плотность численности популяции становится квазипрямоугольной функцией.
Ключевые слова: метод характеристик, уравнение Бернулли, гипергеометрическая функция Гаусса, гипергеометрическая функция Аппеля.
On population migration in an ecological niche with a spatially heterogeneous local capacity
Computer Research and Modeling, 2025, v. 17, no. 3, pp. 483-500The article describes the migration process of a certain population, taking into account the spatial heterogeneity of the local capacity of the ecological niche. It is assumed that this spatial heterogeneity is caused by various natural or artificial factors. The mathematical model of the migration process under consideration is a Cauchy problem on a straight line for some quasi-linear partial differential equation of the first order, which is satisfied by the linear population density under consideration. In this paper, a general solution to this Cauchy problem is found for an arbitrary dependence of the local capacity of an ecological niche on the spatial coordinate. This general solution was applied to describe the migration of the population in question in two different cases: in the case of a dependence of the local capacity of the ecological niche on the spatial coordinate in the form of a smooth step and in the case of a hill-like dependence of the local capacity of the ecological niche on the spatial coordinate. In both cases, the solution to the Cauchy problem is expressed in terms of higher transcendental functions. By applying special relations to the model parameters, these higher transcendental functions are reduced to elementary functions, which makes it possible to obtain exact model solutions explicitly expressed in terms of elementary functions. With the help of these precise solutions, an extensive program of computational experiments has been implemented, showing how the initial population density of the Gaussian form is dispersed by the considered two types of spatial heterogeneity of the local capacity of the ecological niche. These computational experiments have shown that when passing through both step-like and hill-like spatial inhomogeneities of the local capacity of an ecological niche with a narrow Gaussian width of its initial density compared to the characteristic spatial scale of these inhomogeneities, the system forgets its initial state. In particular, if we interpret the system under study as a population living in an extended calm rectilinear river along its bed, then it can be argued that under this initial condition, after the current of this river carries the population under consideration through the area of spatial heterogeneity of the local capacity of the ecological niche, the population density becomes a quasi-rectangular function.
-
О некоторых свойствах коротковолновой статистики временных рядов FOREX
Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 657-669Финансовая математика является одним из наиболее естественных приложений для статистического анализа временных рядов. Действительно, финансовые временные ряды являются порождением одновременной деятельности большого числа различных экономических агентов, что дает основания ожидать, что к ним могут быть применимы методы статистической физики и теории случайных процессов.
В настоящей работе проведен статистический анализ временных рядов для пар валют на рынке FOREX. Особый интерес представляет сравнение поведения временного ряда как функции, с одной стороны, физического времени и, с другой стороны, условного торгового времени, измеряемого в числе элементарных актов изменения цены (тиков). Экспериментально наблюдаемая статистика рассмотренных временных рядов (пар валют «евро–доллар» для первых половин 2007 и 2009 годов и «британский фунт–доллар» для 2007 года) радикально отличается в зависимости от выбора способа измерения времени. Так, при измерении времени в единицах тиков распределение приращений цены может быть хорошо описано нормальным распределением уже на масштабе порядка десяти тиков. При этом при измерении приращений цены как функции реального физического времени распределение приращений продолжает радикально отличаться от нормального, вплоть до масштабов порядка минут и даже часов.
Для объяснения этого явления нами исследованы статистические свойства элементарных приращений по цене и по времени. В частности, показано, что распределение времени между тиками для всех трех рассмотренных временных рядов имеет длинные (1-2 порядка по времени) степенные хвосты с экспоненциальным обрезанием на больших временах. Получены приближенные выражения для распределений времен ожидания для всех трех рассмотренных случаев. Другие статистические характеристики временного ряда (распределение элементарных изменений цены, парные корреляционные функции для приращений цены и для времен ожидания) демонстрируют достаточно простое поведение. Таким образом, именно аномально широкое распределение времен ожидания играет наиболее важную роль в наблюдаемом отклонении распределения приращений от нормального. В связи с этим результатом мы обсуждаем возможность применения модели случайного процесса с непрерывным временем (continuous time random walk, CTRW) для описания временных рядов FOREX.
Ключевые слова: временной ряд FOREX, распределение времен ожидания, распределение вероятностей с тяжелыми хвостами, корреляционный анализ временных рядов, случайное блуждание в непрерывном времени.
On some properties of short-wave statistics of FOREX time series
Computer Research and Modeling, 2017, v. 9, no. 4, pp. 657-669Views (last year): 10.Financial mathematics is one of the most natural applications for the statistical analysis of time series. Financial time series reflect simultaneous activity of a large number of different economic agents. Consequently, one expects that methods of statistical physics and the theory of random processes can be applied to them.
In this paper, we provide a statistical analysis of time series of the FOREX currency market. Of particular interest is the comparison of the time series behavior depending on the way time is measured: physical time versus trading time measured in the number of elementary price changes (ticks). The experimentally observed statistics of the time series under consideration (euro–dollar for the first half of 2007 and for 2009 and British pound – dollar for 2007) radically differs depending on the choice of the method of time measurement. When measuring time in ticks, the distribution of price increments can be well described by the normal distribution already on a scale of the order of ten ticks. At the same time, when price increments are measured in real physical time, the distribution of increments continues to differ radically from the normal up to scales of the order of minutes and even hours.
To explain this phenomenon, we investigate the statistical properties of elementary increments in price and time. In particular, we show that the distribution of time between ticks for all three time series has a long (1-2 orders of magnitude) power-law tails with exponential cutoff at large times. We obtained approximate expressions for the distributions of waiting times for all three cases. Other statistical characteristics of the time series (the distribution of elementary price changes, pair correlation functions for price increments and for waiting times) demonstrate fairly simple behavior. Thus, it is the anomalously wide distribution of the waiting times that plays the most important role in the deviation of the distribution of increments from the normal. As a result, we discuss the possibility of applying a continuous time random walk (CTRW) model to describe the FOREX time series.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




