All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Адаптивное управление сигналами светофоров на основе обучения с подкреплением, инвариантное к конфигурации светофорного объекта
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1253-1269В работе представлен метод адаптивного управления сигналами светофоров, инвариантный к конфигурации светофорного объекта. Предложенный метод использует одну модель нейронной сети для управления светофорами различных конфигураций, отличающихся как по числу контролируемых полос движения, так и по используемому набору фаз. Для описания пространства состояний используется как динамическая информация о состоянии транспортного потока, так и статические данные о конфигурации контролируемого перекрестка. Для повышения скорости обучения модели предлагается использовать эксперта, предоставляющего дополнительные данные для обучения модели. В качестве эксперта используется метод адаптивного управления, основанный на максимизации взвешенного потока транспортных средств через перекресток. Экспериментальные исследования разработанного метода, проведенные в системе микроскопического моделирования движения транспортных средств, подтвердили его работоспособность и эффективность. Была показана возможность применения разработанного метода в сценарии моделирования, не используемом в процессе обучения. Представлено сравнение предложенного метода с другими известными решениями задачи управления светофорным объектом, в том числе с методом, используемым в качестве эксперта. В большинстве сценариев разработанный метод показал лучший результат по критериям среднего времени движения и среднего времени ожидания. Преимущество над методом, используемым в качестве эксперта, в зависимости от исследуемого сценария составило от 2% до 12% по критерию среднего времени ожидания транспортных средств и от 1% до 7% по критерию среднего времени движения.
Ключевые слова: управление сигналами светофоров, обучение с подкреплением, подключенные транспортные средства, имитационное моделирование.
Reinforcement learning-based adaptive traffic signal control invariant to traffic signal configuration
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1253-1269In this paper, we propose an adaptive traffic signal control method invariant to the configuration of the traffic signal. The proposed method uses one neural network model to control traffic signals of various configurations, differing both in the number of controlled lanes and in the used traffic light control cycle (set of phases). To describe the state space, both dynamic information about the current state of the traffic flow and static data about the configuration of a controlled intersection are used. To increase the speed of model training and reduce the required amount of data required for model convergence, it is proposed to use an “expert” who provides additional data for model training. As an expert, we propose to use an adaptive control method based on maximizing the weighted flow of vehicles through an intersection. Experimental studies of the effectiveness of the developed method were carried out in a microscopic simulation software package. The obtained results confirmed the effectiveness of the proposed method in different simulation scenarios. The possibility of using the developed method in a simulation scenario that is not used in the training process was shown. We provide a comparison of the proposed method with other baseline solutions, including the method used as an “expert”. In most scenarios, the developed method showed the best results by average travel time and average waiting time criteria. The advantage over the method used as an expert, depending on the scenario under study, ranged from 2% to 12% according to the criterion of average vehicle waiting time and from 1% to 7% according to the criterion of average travel time.
-
Синхронизации циркадианных ритмов в масштабах гена, клетки и всего организма
Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 255-270В работе выделяется три характерных масштаба описания биосистемы: микроскопический (размер гена), мезоскопический (размер клетки) и макроскопический (размер организма). Для каждого случая обсуждается подход к моделированию циркадианных ритмов на примере предложенной ранее модели с запаздыванием. На уровне гена использовалось стохастическое описание. Показана устойчивость механизма ритмов по отношению к флуктуациям. На мезоскопическом уровне предложено детерминистское описание в рамках пространственно-распределенной модели. Обнаружен эффект групповой синхронизации колебаний в клетках. Макроскопические эффекты исследованы в рамках дискретной модели, описывающей коллективное поведение большого числа клеток. Обсуждается вопрос о сшивании результатов, полученных на разных уровнях описания. Проводится сравнение с экспериментальными данными.
Synchronization of circadian rhythms in the scale of a gene, a cell and a whole organism
Computer Research and Modeling, 2013, v. 5, no. 2, pp. 255-270Views (last year): 1. Citations: 8 (RSCI).In the paper three characteristic scales of a biological system are proposed: microscopic (gene's size), mesoscopic (cell’s size) and macroscopic level (organism’s size). For each case the approach to modeling of circadian rhythms is discussed on the base of a time-delay model. At gene’s scale the stochastic description has been used. The robustness of rhythms mechanism to the fluctuations has been demonstrated. At the mesoscopic scale we propose the deterministic description within the spatially extended model. It was found the effect of collective synchronization of rhythms in cells. Macroscopic effects have been studied within the discrete model describing the collective behaviour of large amount of cells. The problem of cross-linking of results obtained at different scales is discussed. The comparison with experimental data is given.
-
Моделирование транспортных потоков на основе квазигазодинамического подхода и теории клеточных автоматов с использованием суперкомпьютеров
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 175-194Целью исследования являются моделирование динамики автотранспортных потоков на транспортных сетях мегаполисов и систематизация современного состояния дел в этой области. Во введении указывается, что на первый план выходит развитие интеллектуальных транспортных систем, которые становятся неотъемлемой частью современных транспортных технологий. Основным ядром таких систем являются адекватные математические модели, максимально приближенные к реальности. Отмечается, что в связи с большим объемом вычислений необходимо использование суперкомпьютеров, следовательно, создание специальных пар аллельных алгоритмов. В начале статьи приводится современная классификация моделей, обсуждаются отличительные особенности каждого класса со ссылками на соответствующие примеры. Далее основное внимание уделяется созданным авторами статьи разработкам в области как макроскопического, так и микроскопического моделирования и определению места этих разработок в приведенной выше классификации. Макроскопическая модель основана на приближении сплошной среды и использует идеологию квазигазодинамических систем уравнений. Указаны ее достоинства по сравнению с существующими моделями этого класса. Система уравнений модели представлена как в одномерном варианте, но с возможностью исследования многополосного движения, так и в двумерном варианте, с введением понятия боковой скорости, то есть скорости перестроения из полосы в полосу. Второй вариант позволяет проводить вычисления в расчетной области, соответствующей реальной геометрии дороги. Представлены тестовые расчеты движения по дороге с локальным расширением и по дороге с системой светофоров с различными светофорными режимами. Расчеты позволили в первом случае сделать интересные выводы о влиянии расширения на пропускную способность дороги в целом, а во втором случае — выбрать оптимальный режим для получения эффекта «зеленой волны». Микроскопическая модель основана на теории клеточных автоматов и однополосной модели Нагеля – Шрекенберга и обобщена авторами на случай многополосного движения. В модели реализованы различные поведенческие стратегии водителей. В качестве теста моделируется движение на реальном участке транспортной сети в центре г. Москвы. Причем для грамотного прохождения транспортных узлов сети в соответствии с правилами движения реализованы специальные алгоритмы, адаптированные для параллельных вычислений. Тестовые расчеты выполнены на суперкомпьютере К-100 ЦКП ИПМ им. М. В. Келдыша РАН.
Ключевые слова: интеллектуальные транспортные системы, теория транспортныхп отоков, макроскопические и микроскопические модели, квазигазодинамическая система уравнений, клеточные автоматы, многополосное движение, параллельные вычисления.
Simulation of traffic flows based on the quasi-gasdynamic approach and the cellular automata theory using supercomputers
Computer Research and Modeling, 2024, v. 16, no. 1, pp. 175-194The purpose of the study is to simulate the dynamics of traffic flows on city road networks as well as to systematize the current state of affairs in this area. The introduction states that the development of intelligent transportation systems as an integral part of modern transportation technologies is coming to the fore. The core of these systems contain adequate mathematical models that allow to simulate traffic as close to reality as possible. The necessity of using supercomputers due to the large amount of calculations is also noted, therefore, the creation of special parallel algorithms is needed. The beginning of the article is devoted to the up-to-date classification of traffic flow models and characterization of each class, including their distinctive features and relevant examples with links. Further, the main focus of the article is shifted towards the development of macroscopic and microscopic models, created by the authors, and determination of the place of these models in the aforementioned classification. The macroscopic model is based on the continuum approach and uses the ideology of quasi-gasdynamic systems of equations. Its advantages are indicated in comparison with existing models of this class. The model is presented both in one-dimensional and two-dimensional versions. The both versions feature the ability to study multi-lane traffic. In the two-dimensional version it is made possible by introduction of the concept of “lateral” velocity, i. e., the speed of changing lanes. The latter version allows for carrying out calculations in the computational domain which corresponds to the actual geometry of the road. The section also presents the test results of modeling vehicle dynamics on a road fragment with the local widening and on a road fragment with traffic lights, including several variants of traffic light regimes. In the first case, the calculations allow to draw interesting conclusions about the impact of a road widening on a road capacity as a whole, and in the second case — to select the optimal regime configuration to obtain the “green wave” effect. The microscopic model is based on the cellular automata theory and the single-lane Nagel – Schreckenberg model and is generalized for the multi-lane case by the authors of the article. The model implements various behavioral strategies of drivers. Test computations for the real transport network section in Moscow city center are presented. To achieve an adequate representation of vehicles moving through the network according to road traffic regulations the authors implemented special algorithms adapted for parallel computing. Test calculations were performed on the K-100 supercomputer installed in the Centre of Collective Usage of KIAM RAS.
-
Математическое моделирование фазовых переходов при коллективном взаимодействии агентов
Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 1005-1028Коллективное поведение может выступать в роли механизма терморегуляции и играть ключевую роль при выживании группы организмов. Такие явления в среде животных, как правило, являются предметом изучения биологии, так как внезапные переходы к коллективному поведению трудно дифференцировать от психологической и социальной адаптации животных в группе. Тем не менее в работе указывается важный пример, когда стая животных демонстрирует фазовые переходы, сходные с явлением классической тепловой конвекции в жидкостях и газах. Этот вопрос может быть изучен также экспериментально в рамках синтетических систем, состоящих из самодвижущихся роботов, которые действуют по определенному заданному алгоритму. Обобщая оба эти случая, мы рассматриваем задачу о фазовых переходах в плотной группе взаимодействующих самодвижущихся агентов. Врамк ах микроскопической теории мы предлагаем математическую модель явления, в которой агенты представлены в виде тел, взаимодействующих друг с другом в соответствии с эффективным потенциалом особого вида, выражающим стремление агентов двигаться в направлении градиента общего теплового поля. Показано, что управляющим параметром задачи является численность группы. Дискретная модель с индивидуальной динамикой агентов воспроизводит большинство явлений, наблюдаемых как в естественных стаях животных, демонстрирующих коллективную терморегуляцию, так и в синтетических сложных системах, состоящих из роботов. Наблюдается фазовый переход 1-го рода со сменой агрегатного состояния в среде агентов, который заключается в самосборке первоначальной слабоструктурированной массы агентов в плотные квазикристаллические структуры. Кроме того, показано, что с увеличением численности скопления наблюдается фазовый переход 2-го рода в форме тепловой конвекции, который включает внезапное ожижение группы и переход к вихревому движению. Последнее обеспечивает более эффективное расходование энергии в случае синтетической системы взаимодействующих роботов и коллективное выживание всех особей в случае природных стай животных. С ростом численности группы происходят вторичные бифуркации, вихревая структура толпы агентов усложняется.
Mathematical modeling of phase transitions during collective interaction of agents in a common thermal field
Computer Research and Modeling, 2025, v. 17, no. 5, pp. 1005-1028Collective behavior can serve as a mechanism of thermoregulation and play a key role in the joint survival of a group of organisms. In higher animals, such phenomena are usually the subject of study of biology since sudden transitions to collective behavior are difficult to differentiate from the psychological and social adaptation of animals. However, in this paper, we indicate several important examples when a flock of higher animals demonstrates phase transitions similar to known phenomena in liquids and gases. This issue can also be studied experimentally within the framework of synthetic systems consisting of self-propelled robots that act according to a certain given algorithm. Generalizing both of these cases, we consider the problem of phase transitions in a dense group of interacting selfpropelled agents. Within the framework of microscopic theory, we propose a mathematical model of the phenomenon, in which agents are represented as bodies interacting with each other in accordance with an effective potential of a special type, expressing the desire of agents to move in the direction of the gradient of the joint thermal field. We show that the number of agents in the group, the group power, is the control parameter of the problem. A discrete model with individual dynamics of agents reproduces most of the phenomena observed both in natural flocks of higher animals engaged in collective thermoregulation and in synthetic complex systems. A first-order phase transition is observed, which symbolizes a change in the aggregate state in a group of agents. One observes the self-assembly of the initial weakly structured mass of agents into dense quasi-crystalline structures. We demonstrate also that, with an increase in the group power, a second-order phase transition in the form of thermal convection can occur. It manifests in a sudden liquefaction of the group and a transition to vortex motion, which ensures more efficient energy consumption in the case of a synthetic system of interacting robots and the collective survival of all individuals in the case of natural animal flocks.With an increase in the group power, secondary bifurcations occur, the vortex structure in agent medium becomes more complicated.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




