All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Обзор алгоритмических решений для развертывания нейронных сетей на легких устройствах
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1601-1619В современном мире, ориентированном на технологии, легкие устройства, такие как устройства Интернета вещей (IoT) и микроконтроллеры (MCU), становятся все более распространенными. Эти устройства более энергоэффективны и доступны по цене, но часто обладают урезанными возможностями, по сравнению со стандартными версиями, такими как ограниченная память и вычислительная мощность. Современные модели машинного обучения могут содержать миллионы параметров, что приводит к значительному росту требований по объему памяти. Эта сложность не только затрудняет развертывание больших моделей на устройствах с ограниченными ресурсами, но и увеличивает риск задержек и неэффективности при обработке данных, что критично в случаях, когда требуются ответы в реальном времени, таких как автономное вождение или медицинская диагностика.
В последние годы нейронные сети достигли значительного прогресса в методах оптимизации моделей, что помогает в развертывании и инференсе на этих небольших устройствах. Данный обзор представляет собой подробное исследование прогресса и последних достижений в оптимизации нейронных сетей, сосредотачиваясь на ключевых областях, таких как квантизация, прореживание, дистилляция знаний и поиск архитектур нейронных сетей. Обзор рассматривает, как эти алгоритмические решения развивались и как новые подходы улучшили существующие методы, делая нейронные сети более эффективными. Статья предназначена для исследователей, практиков и инженеров в области машинного обучения, которые могут быть незнакомы с этими методами, но хотят изучить доступные техники. В работе подчеркиваются текущие исследования в области оптимизации нейронных сетей для достижения лучшей производительности, снижения потребления энергии и ускорения времени обучения, что играет важную роль в дальнейшей масштабируемости нейронных сетей. Кроме того, в обзоре определяются пробелы в текущих исследованиях и закладывается основа для будущих исследований, направленных на повышение применимости и эффективности существующих стратегий оптимизации.
Ключевые слова: квантизация, поиск архитектуры нейронной сети, дистилляция знаний, обрезка, обучение с подкреплением, сжатие модели.
Review of algorithmic solutions for deployment of neural networks on lite devices
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1601-1619In today’s technology-driven world, lite devices like Internet of Things (IoT) devices and microcontrollers (MCUs) are becoming increasingly common. These devices are more energyefficient and affordable, often with reduced features compared to the standard versions such as very limited memory and processing power for typical machine learning models. However, modern machine learning models can have millions of parameters, resulting in a large memory footprint. This complexity not only makes it difficult to deploy these large models on resource constrained devices but also increases the risk of latency and inefficiency in processing, which is crucial in some cases where real-time responses are required such as autonomous driving and medical diagnostics. In recent years, neural networks have seen significant advancements in model optimization techniques that help deployment and inference on these small devices. This narrative review offers a thorough examination of the progression and latest developments in neural network optimization, focusing on key areas such as quantization, pruning, knowledge distillation, and neural architecture search. It examines how these algorithmic solutions have progressed and how new approaches have improved upon the existing techniques making neural networks more efficient. This review is designed for machine learning researchers, practitioners, and engineers who may be unfamiliar with these methods but wish to explore the available techniques. It highlights ongoing research in optimizing networks for achieving better performance, lowering energy consumption, and enabling faster training times, all of which play an important role in the continued scalability of neural networks. Additionally, it identifies gaps in current research and provides a foundation for future studies, aiming to enhance the applicability and effectiveness of existing optimization strategies.
-
Модели нейронных сетей для анализа изображений с БПЛА при дистанционном лесопатологическом мониторинге хвойных лесов
Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 641-663Рассмотрены основные задачи дистанционного лесопатологического мониторинга пораженных насекомыми-вредителями хвойных лесов. Показано, что при их решении необходимо использовать результаты мультиклассификации хвойных деревьев на изображениях высокого и сверхвысокого разрешения, оперативно получаемых при мониторинге путем съемки лесов с космических аппаратов или с беспилотных летательных аппаратов (БПЛА). Проведен аналитический обзор современных моделей и методов мультиклассификации изображений хвойных лесов и с учетом его результатов разработаны три модели полносверточных нейронных сетей Mo-U-Net, At-Mo-U-Net и Res-Mo-U-Net, основанные на классической модели U-Net, а также модифицирована модель трансформера Segformer. По RGB-изображениям поврежденных уссурийским полиграфом Polygraphus proximus деревьев пихты сибирской Abies sibirica, полученных с помощью фотокамеры на БПЛА, созданы два набора датасетов: первый набор включает фрагменты изображений и их эталонных масок сегментации размером 256 × 256 × 3 пикселей, а второй — фрагменты размером 480 × 480 × 3 пикселей. Проведены комплексные исследования каждой из обученных моделей нейросетей по точности классификации степени поражения (состояния здоровья) деревьев A. Sibirica на изображениях и по скорости вычисления моделей с использованием тестовых датасетов из каждого набора. Выявлено, что в случае фрагментов размером 256×256×3 пикселей предпочтение наряду с моделью Modified Segformer следует отдать модели с механизмом внимания At-Mo-U-Net, а в случае фрагментов размером 480 × 480 × 3 пикселей — гибридной модели с остаточными блоками Res-Mo-U-Net. Из результатов исследований точности классификации и скорости вычислений каждой из разработанных моделей сделан вывод о том, что при решении задачи мультиклассификации пораженных деревьев пихты в производственных масштабах предпочтение следует отдать модели Res-Mo-U-Net. Именно она является компромиссным вариантом, удовлетворяющим противоречащим друг другу требованиям высокой точности классификации деревьев на изображениях и высокой скорости вычислений модели.
Ключевые слова: патологический мониторинг хвойных лесов, беспилотный летательный аппарат, стволовой вредитель уссурийский полиграф Polygraphus proximus, мультиклассификация изображений деревьев пихты сибирской Abies sibirica, полносверточная нейронная сеть, трансформер.
Advanced neural network models for UAV-based image analysis in remote pathology monitoring of coniferous forests
Computer Research and Modeling, 2025, v. 17, no. 4, pp. 641-663The key problems of remote forest pathology monitoring for coniferous forests affected by insect pests have been analyzed. It has been demonstrated that addressing these tasks requires the use of multiclass classification results for coniferous trees in high- and ultra-high-resolution images, which are promptly obtained through monitoring via satellites or unmanned aerial vehicles (UAVs). An analytical review of modern models and methods for multiclass classification of coniferous forest images was conducted, leading to the development of three fully convolutional neural network models: Mo-U-Net, At-Mo-U-Net, and Res-Mo-U-Net, all based on the classical U-Net architecture. Additionally, the Segformer transformer model was modified to suit the task. For RGB images of fir trees Abies sibirica affected by the four-eyed bark beetle Polygraphus proximus, captured using a UAV-mounted camera, two datasets were created: the first dataset contains image fragments and their corresponding reference segmentation masks sized 256 × 256 × 3 pixels, while the second dataset contains fragments sized 480 × 480 × 3 pixels. Comprehensive studies were conducted on each trained neural network model to evaluate both classification accuracy for assessing the degree of damage (health status) of Abies sibirica trees and computation speed using test datasets from each set. The results revealed that for fragments sized 256 × 256 × 3 pixels, the At-Mo-U-Net model with an attention mechanism is preferred alongside the Modified Segformer model. For fragments sized 480 × 480 × 3 pixels, the Res-Mo-U-Net hybrid model with residual blocks demonstrated superior performance. Based on classification accuracy and computation speed results for each developed model, it was concluded that, for production-scale multiclass classification of affected fir trees, the Res-Mo-U-Net model is the most suitable choice. This model strikes a balance between high classification accuracy and fast computation speed, meeting conflicting requirements effectively.
-
Модель формирования первичных поведенческих паттернов с адаптивным поведением на основе использования комбинации случайного поиска и опыта
Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 941-950В работе предложен адаптивный алгоритм, моделирующий процесс формирования начальных поведенческих навыков на примере системы «глаза–манипулятор» анимата. Ситуация формирования начальных поведенческих навыков возникает, например, когда ребенок осваивает управление своими руками на основе понимания связи между исходно неидентифицированными пятнами на сетчатке своих глаз и положением реального предмета. Поскольку навыки управления телом не «вшиты» исходно в головной и спинной мозг на уровне инстинктов, то человеческому ребенку, как и большинству детенышей других млекопитающих, приходится осваивать эти навыки в режиме поискового поведения. Поисковое поведение начинается с метода проб и ошибок в чистом виде, затем его вклад постепенно уменьшается по мере освоения своего тела и окружающей среды. Поскольку образцов правильного поведения на этом этапе развития организм не имеет, то единственным способом выделения правильных навыков является положительное подкрепление при достижении цели. Ключевой особенностью предлагаемого алгоритма является фиксация в режиме импринтинга только завершающих действий, которые привели к успеху, или, что очень важно, привели к уже знакомой запечатленной ситуации, однозначно приводящей к успеху. Со временем непрерывная цепочка правильных действий удлиняется — максимально используется предыдущий позитивный опыт, а негативный «забывается» и не используется. Тем самым наблюдается постепенная замена случайного поиска целенаправленными действиями, что наблюдается и у реальных детенышей.
Тем самым алгоритм способен устанавливать соответствие между закономерностями окружающего мира и «внутренними ощущениями», внутренним состоянием самого анимата. В предлагаемой модели анимата использовалось 2 типа нейросетей: 1) нейросеть NET1, на вход которой подавались текущие положения кисти руки и целевой точки, а на выходе — двигательные команды, направляющие «кисть» манипулятора анимата к целевой точке; 2) нейросеть NET2, которая на входе получала координаты цели и текущей координаты «кисти», а на выходе формировала значение вероятности того, что анимату уже «знакома» эта ситуация и он «знает», как на нее реагировать. Благодаря такой архитектуре у анимата есть возможность опираться на «опыт» нейросети в распознанных ситуациях, когда отклик от сети NET2 близок к 1, и, с другой стороны, запускать случайный поиск, когда опыта функционирования в этой области зрительного поля у анимата нет (отклик NET2 близок к 0).
Model of formation of primary behavioral patterns with adaptive behavior based on the combination of random search and experience
Computer Research and Modeling, 2016, v. 8, no. 6, pp. 941-950Views (last year): 6. Citations: 2 (RSCI).In this paper, we propose an adaptive algorithm that simulates the process of forming the initial behavioral skills on the example of the system ‘eye-arm’ animat. The situation is the formation of the initial behavioral skills occurs, for example, when a child masters the management of their hands by understanding the relationship between baseline unidentified spots on the retina of his eye and the position of the real object. Since the body control skills are not ‘hardcoded’ initially in the brain and the spinal cord at the level of instincts, the human child, like most young of other mammals, it is necessary to develop these skills in search behavior mode. Exploratory behavior begins with trial and error and then its contribution is gradually reduced as the development of the body and its environment. Since the correct behavior patterns at this stage of development of the organism does not exist for now, then the only way to select the right skills is a positive reinforcement to achieve the objective. A key feature of the proposed algorithm is to fix in the imprinting mode, only the final action that led to success, and that is very important, led to the familiar imprinted situation clearly leads to success. Over time, the continuous chain is lengthened right action — maximum use of previous positive experiences and negative ‘forgotten’ and not used.
Thus there is the gradual replacement of the random search purposeful actions that observed in the real young. Thus, the algorithm is able to establish a correspondence between the laws of the world and the ‘inner feelings’, the internal state of the animat. The proposed animat model was used 2 types of neural networks: 1) neural network NET1 to the input current which is fed to the position of the brush arms and the target point, and the output of motor commands, directing ‘brush’ manipulator animat to the target point; 2) neural network NET2 is received at the input of target coordinates and the current coordinates of the ‘brush’ and the output value is formed likelihood that the animat already ‘know’ this situation, and he ‘knows’ how to react to it. With this architecture at the animat has to rely on the ‘experience’ of neural networks to recognize situations where the response from NET2 network of close to 1, and on the other hand, run a random search, when the experience of functioning in this area of the visual field in animat not (response NET2 close to 0).
-
Анализ воздействия аддитивного и параметрического шума на модель нейрона Моррис –Лекара
Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 449-468Работа посвящена проблеме анализа эффектов, связанных с воздействием аддитивного и параметрического шума на процессы, происходящие в нервной клетке. Это исследование проводится на примере известной модели Моррис–Лекара, которая описывается двумерной системой обыкновенных дифференциальных уравнений. Одним из основных свойств нейрона является возбудимость — способность отвечать на внешнее воздействие резким изменением электрического потенциала на мембране клетки. В данной статье рассматривается набор параметров, при котором модель демонстрирует возбудимость класса 2. Динамика системы исследуется при изменении параметра внешнего тока. Рассматриваются две параметрические зоны: зона моностабильности, в которой единственным аттрактором детерминированной системы является устойчивое равновесие, и зона бистабильности, характеризующаяся сосуществованием устойчивого равновесия и предельного цикла. Показывается, что в обоих случаях под действием шума в системе генерируются колебания смешанных мод (т. е. чередование колебаний малых и больших амплитуд). В зоне моностабильности данный феномен связан с высокой возбудимостью системы, а в зоне бистабильности он объясняется индуцированными шумом переходами между аттракторами. Это явление подтверждается изменениями плотности распределения случайных траекторий, спектральной плотности и статистиками межспайковых интервалов. Проводится сравнение действия аддитивного и параметрического шума. Показывается, что при добавлении параметрического шума стохастическая генерация колебаний смешанных мод наблюдается при меньших интенсивностях, чем при воздействии аддитивного шума. Для количественного анализа этих стохастических феноменов предлагается и применяется подход, основанный на технике функций стохастической чувствительности и методе доверительных областей. В случае устойчивого равновесия это эллипс, а для устойчивого предельного цикла такой областью является доверительная полоса. Исследование взаимного расположения доверительных областей и границы, разделяющей бассейны притяжения аттракторов, при изменении параметров шума позволяет предсказать возникновение индуцированных шумом переходов. Эффективность данного аналитического подхода подтверждается хорошим соответствием теоретических оценок с результатами прямого численного моделирования.
Ключевые слова: модель Моррис –Лекара, нейронная возбудимость, гауссовский шум, индуцированные шумом переходы, стохастическая чувствительность, доверительные области.
Analysis of additive and parametric noise effects on Morris – Lecar neuron model
Computer Research and Modeling, 2017, v. 9, no. 3, pp. 449-468Views (last year): 11.This paper is devoted to the analysis of the effect of additive and parametric noise on the processes occurring in the nerve cell. This study is carried out on the example of the well-known Morris – Lecar model described by the two-dimensional system of ordinary differential equations. One of the main properties of the neuron is the excitability, i.e., the ability to respond to external stimuli with an abrupt change of the electric potential on the cell membrane. This article considers a set of parameters, wherein the model exhibits the class 2 excitability. The dynamics of the system is studied under variation of the external current parameter. We consider two parametric zones: the monostability zone, where a stable equilibrium is the only attractor of the deterministic system, and the bistability zone, characterized by the coexistence of a stable equilibrium and a limit cycle. We show that in both cases random disturbances result in the phenomenon of the stochastic generation of mixed-mode oscillations (i. e., alternating oscillations of small and large amplitudes). In the monostability zone this phenomenon is associated with a high excitability of the system, while in the bistability zone, it occurs due to noise-induced transitions between attractors. This phenomenon is confirmed by changes of probability density functions for distribution of random trajectories, power spectral densities and interspike intervals statistics. The action of additive and parametric noise is compared. We show that under the parametric noise, the stochastic generation of mixed-mode oscillations is observed at lower intensities than under the additive noise. For the quantitative analysis of these stochastic phenomena we propose and apply an approach based on the stochastic sensitivity function technique and the method of confidence domains. In the case of a stable equilibrium, this confidence domain is an ellipse. For the stable limit cycle, this domain is a confidence band. The study of the mutual location of confidence bands and the boundary separating the basins of attraction for different noise intensities allows us to predict the emergence of noise-induced transitions. The effectiveness of this analytical approach is confirmed by the good agreement of theoretical estimations with results of direct numerical simulations.
-
Транспортные данные для моделирования эффективной транспортной среды в Республике Татарстан
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 395-404Автоматизированные системы мониторинга городского трафика широко используются для решения различных задач в интеллектуальных транспортных системах различных регионов. Такие системы включают комплексы фотовидеофиксации, видеонаблюдения, управления дорожным трафиком и т. д. Для эффективного управления транспортным потоком и своевременного реагирования на дорожные инциденты необходимы непрерывный сбор и анализ потока информации, поступающей с данных комплексов, формирование прогнозных значений для дальнейшего выявления аномалий. При этом для повышения качества прогноза требуется агрегирование данных, поступающих из различных источников. Это позволяет уменьшить ошибку прогноза, связанную с ошибками и пропусками в исходных данных. В данной статье реализован подход к краткосрочному и среднесрочному прогнозированию транспортных потоков (5, 10, 15 минут) на основе агрегирования данных, поступающих от комплексов фотовидеофиксации и систем видеонаблюдения. Реализован прогноз с использованием различных архитектур рекуррентных нейронных сетей: LSTM, GRU, двунаправленной LSTM с одним и двумя слоями. Работа двунаправленной LSTM исследовалась для 64 и 128 нейронов в каждом слое. Исследовалась ошибка прогноза для различных размеров входного окна (1, 4, 12, 24, 48). Для оценки прогнозной ошибки использована метрика RMSE. В ходе проведенных исследований получено, что наименьшая ошибка прогноза (0.032405) достигается при использовании однослойной рекуррентной нейронной сети LSTM с 64 нейронами и размером входного окна, равном 24.
Ключевые слова: транспортное моделирование, фотовидеофиксация, прогнозирование транспортного потока.
Modeling of the effective environment in the Republic of Tatarstan using transport data
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 395-404Automated urban traffic monitoring systems are widely used to solve various tasks in intelligent transport systems of different regions. They include video enforcement, video surveillance, traffic management system, etc. Effective traffic management and rapid response to traffic incidents require continuous monitoring and analysis of information from these complexes, as well as time series forecasting for further anomaly detection in traffic flow. To increase the forecasting quality, data fusion from different sources is needed. It will reduce the forecasting error, related to possible incorrect values and data gaps. We implemented the approach for short-term and middle-term forecasting of traffic flow (5, 10, 15 min) based on data fusion from video enforcement and video surveillance systems. We made forecasting using different recurrent neural network architectures: LSTM, GRU, and bidirectional LSTM with one and two layers. We investigated the forecasting quality of bidirectional LSTM with 64 and 128 neurons in hidden layers. The input window size (1, 4, 12, 24, 48) was investigated. The RMSE value was used as a forecasting error. We got minimum RMSE = 0.032405 for basic LSTM with 64 neurons in the hidden layer and window size = 24.
-
Особенности применения физически информированных нейронных сетей для решения обыкновенных дифференциальных уравнений
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1621-1636Рассматривается применение физически информированных нейронных сетей с использованием многослойных персептронов для решения задач Коши, в которых правые части уравнения являются непрерывными монотонно возрастающими, убывающими или осциллирующими функциями. С помощью вычислительных экспериментов изучено влияние метода построения приближенного нейросетевого решения, структуры нейронной сети, алгоритмов оптимизации и средств программной реализации на процесс обучения и точность полученного решения. Выполнен анализ эффективности работы наиболее часто используемых библиотек машинного обучения при разработке программ на языках программирования Python и C#. Показано, что применение языка C# позволяет сократить время обучения нейросетей на 20–40%. Выбор различных функций активации влияет на процесс обучения и точность приближенного решения. Наиболее эффективными в рассматриваемых задачах являются сигмоида и гиперболический тангенс. Минимум функции потерь достигается при определенном количестве нейронов скрытого слоя однослойной нейронной сети за фиксированное время обучения нейросетевой модели, причем усложнение структуры сети за счет увеличения числа нейронов не приводит к улучшению результатов обучения. При этом величина шага сетки между точками обучающей выборки, обеспечивающей минимум функции потерь, в рассмотренных задачах Коши практически одинакова. Кроме того, при обучении однослойных нейронных сетей наиболее эффективными для решения задач оптимизации являются метод Adam и его модификации. Дополнительно рассмотрено применение двух- и трех-слойных нейронных сетей. Показано, что в этих случаях целесообразно использовать алгоритм LBFGS, который по сравнению с методом Adam в ряде случаев требует на порядок меньшего времени обучения при достижении одинакового порядка точности. Исследованы также особенности обучения нейронной сети в задачах Коши, в которых решение является осциллирующей функцией с монотонно убывающей амплитудой. Для них необходимо строить нейросетевое решение не с постоянными, а с переменными весовыми коэффициентами, что обеспечивает преимущество такого подхода при обучении в тех узлах, которые расположены вблизи конечной точки интервала решения задачи.
Ключевые слова: обыкновенные дифференциальные уравнения, машинное обучение, физически информированные нейронные сети, численные методы.
Analysis of the physics-informed neural network approach to solving ordinary differential equations
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1621-1636Considered the application of physics-informed neural networks using multi layer perceptrons to solve Cauchy initial value problems in which the right-hand sides of the equation are continuous monotonically increasing, decreasing or oscillating functions. With the use of the computational experiments the influence of the construction of the approximate neural network solution, neural network structure, optimization algorithm and software implementation means on the learning process and the accuracy of the obtained solution is studied. The analysis of the efficiency of the most frequently used machine learning frameworks in software development with the programming languages Python and C# is carried out. It is shown that the use of C# language allows to reduce the time of neural networks training by 20–40%. The choice of different activation functions affects the learning process and the accuracy of the approximate solution. The most effective functions in the considered problems are sigmoid and hyperbolic tangent. The minimum of the loss function is achieved at the certain number of neurons of the hidden layer of a single-layer neural network for a fixed training time of the neural network model. It’s also mentioned that the complication of the network structure increasing the number of neurons does not improve the training results. At the same time, the size of the grid step between the points of the training sample, providing a minimum of the loss function, is almost the same for the considered Cauchy problems. Training single-layer neural networks, the Adam method and its modifications are the most effective to solve the optimization problems. Additionally, the application of twoand three-layer neural networks is considered. It is shown that in these cases it is reasonable to use the LBFGS algorithm, which, in comparison with the Adam method, in some cases requires much shorter training time achieving the same solution accuracy. The specificity of neural network training for Cauchy problems in which the solution is an oscillating function with monotonically decreasing amplitude is also investigated. For these problems, it is necessary to construct a neural network solution with variable weight coefficient rather than with constant one, which improves the solution in the grid cells located near by the end point of the solution interval.
-
Прогнозирование занятости частотного ресурса в системе когнитивного радио с использованием нейронной сети Колмогорова – Арнольда
Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 109-123Для систем когнитивного радио актуальным является использование эффективных алгоритмов поиска свободных каналов, которые могут быть предоставлены вторичным пользователям. Поэтому данная статья посвящена повышению точности прогнозирования занятости частотного ресурса системы сотовой связи с использованием пространственно-временных карт радиосреды. Формирование карты радиосреды осуществляется для системы сотовой связи четвертого поколения Long-Term Evolution. С учетом этого разработана структура модели, включающая генерацию данных и позволяющая выполнять обучение и тестирование искусственной нейронной сети для прогнозирования занятости частотных ресурсов, представленных в виде содержимого ячеек карты радиосреды. Описана методика оценки точности прогнозирования. Имитационная модель системы сотовой связи реализована в программной среде MatLab. Разработанная модель прогнозирования занятости частотного ресурса реализована на языке программирования Python. Представлена полная файловая структура модели. Эксперименты выполнены с использованием искусственных нейронных сетей на основе архитектур нейронных сетей Long Short-Term Memory и Колмогорова – Арнольда с учетом ее модификации. Установлено, что при равном количестве параметров нейронная сеть Колмогорова – Арнольда обучается быстрее для данной задачи. Полученные результаты исследований свидетельствуют о повышении точности прогнозирования занятости частотного ресурса системы сотовой связи при использовании нейронной сети Колмогорова – Арнольда.
Ключевые слова: система сотовой связи, Long-Term Evolution, Long Short-Term Memory, искусственные нейронные сети.
Prediction of frequency resource occupancy in a cognitive radio system using the Kolmogorov – Arnold neural network
Computer Research and Modeling, 2025, v. 17, no. 1, pp. 109-123For cognitive radio systems, it is important to use efficient algorithms that search for free channels that can be provided to secondary users. Therefore, this paper is devoted to improving the accuracy of prediction frequency resource occupancy of a cellular communication system using spatiotemporal radio environment maps. The formation of a radio environment map is implemented for the fourthgeneration cellular communication system Long-Term Evolution. Taking this into account, a model structure has been developed that includes data generation and allows training and testing of an artificial neural network to predict the occupancy of frequency resources presented as the contents of radio environment map cells. A method for assessing prediction accuracy is described. The simulation model of the cellular communication system is implemented in the MatLab. The developed frequency resource occupancy prediction model is implemented in the Python. The complete file structure of the model is presented. The experiments were performed using artificial neural networks based on the Long Short-Term Memory and Kolmogorov – Arnold neural network architectures, taking into account its modification. It was found that with an equal number of parameters, the Kolmogorov –Arnold neural network learns faster for a given task. The obtained research results indicate an increase in the accuracy of prediction the occupancy of the frequency resource of the cellular communication system when using the Kolmogorov – Arnold neural network.
-
Определение крупных трещин в геологической среде с использованием сверточных нейронных сетей
Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 889-901В данной работе рассматривается обратная задача сейсморазведки — определение структуры исследуемой среды по зарегистрированному волновому отклику от нее. В качестве целевого объекта рассматриваются крупные трещины, размеры и положение которых необходимо определить.
Для решения прямой задачи используется численное моделирование сеточно-характеристическим методом. Сеточно-характеристический метод позволяет применять физически обоснованные алгоритмы расчета точек на внешних границах области и контактных границах внутри области интегрирования. Трещина принимается тонкой, для описания трещины используется специальное условие на створках трещины.
Обратная задача решается с помощью сверточных нейронных сетей. Входными данными нейронной сети являются сейсмограммы, интерпретируемые как изображения. Выходными данными являются маски, описывающие среду на структурированной сетке. Каждый элемент такой сетки относится к одному из двух классов: либо элемент сплош- ного геологического массива, либо элемент, через который проходит трещина. Такой подход позволяет рассматривать среду, в которой находится неизвестное наперед количество трещин.
Для обучения нейронной сети использовались исключительно примеры с одной трещиной. Для итогового тестирования обученной сети использовались отдельные примеры с несколькими трещинами, эти примеры никак не были задействованы в ходе обучения. Целью тестирования в таких условиях была проверка, что обученная сеть обладает достаточной общностью, распознает в сигнале признаки наличия трещины и при этомне страдает от переобучения на примерах с единственной трещиной в среде.
В работе показано, что сверточная сеть, обученная на примерах с единичной трещиной, может использоваться для обработки данных с множественными трещинами. Хорошо определяются в том числе небольшие трещины на больших глубинах, если они пространственно разнесены друг от друга на расстояние большее, чемдлина сканирующего импульса. В этом случае на сейсмограмме их волновые отклики хорошо различимы и могут быть интерпретированы нейронной сетью. В случае близко расположенных трещин могут возникать артефакты и ошибки интерпретации. Это связано с тем, что на сейсмограмме волновые отклики близких трещин сливаются, из-за чего нейронная сеть интерпретирует несколько рядом расположенных трещин как одну. Отметим, что подобную ошибку, скорее всего, допустил бы и человек при ручной интерпретации данных. В работе приведены примеры некоторых таких артефактов, искажений и ошибок распознавания.
Ключевые слова: сейсморазведка, сплошная среда, прямая задача, обратная задача, сеточно-характеристический метод, машинное обучение, нейронные сети, сверточные сети.
Detecting large fractures in geological media using convolutional neural networks
Computer Research and Modeling, 2025, v. 17, no. 5, pp. 889-901This paper considers the inverse problem of seismic exploration — determining the structure of the media based on the recorded wave response from it. Large cracks are considered as target objects, whose size and position are to be determined.
he direct problem is solved using the grid-characteristic method. The method allows using physically based algorithms for calculating outer boundaries of the region and contact boundaries inside the region. The crack is assumed to be thin, a special condition on the crack borders is used to describe the crack.
The inverse problem is solved using convolutional neural networks. The input data of the neural network are seismograms interpreted as images. The output data are masks describing the medium on a structured grid. Each element of such a grid belongs to one of two classes — either an element of a continuous geological massif, or an element through which a crack passes. This approach allows us to consider a medium with an unknown number of cracks.
The neural network is trained using only samples with one crack. The final testing of the trained network is performed using additional samples with several cracks. These samples are not involved in the training process. The purpose of testing under such conditions is to verify that the trained network has sufficient generality, recognizes signs of a crack in the signal, and does not suffer from overtraining on samples with a single crack in the media.
The paper shows that a convolutional network trained on samples with a single crack can be used to process data with multiple cracks. The networks detects fairly small cracks at great depths if they are sufficiently spatially separated from each other. In this case their wave responses are clearly distinguishable on the seismogram and can be interpreted by the neural network. If the cracks are close to each other, artifacts and interpretation errors may occur. This is due to the fact that on the seismogram the wave responses of close cracks merge. This cause the network to interpret several cracks located nearby as one. It should be noted that a similar error would most likely be made by a human during manual interpretation of the data. The paper provides examples of some such artifacts, distortions and recognition errors.
-
Исследование клеточной динамики с помощью интерференционной микроскопии с применением вейвлет-анализа
Компьютерные исследования и моделирование, 2009, т. 1, № 1, с. 77-83Методом лазерной интерференционной микроскопии исследовали внутриклеточную динамику эритроцитов, нейронов и тучных клеток. Показано, что существуют регулярные изменения оптических свойств клеток, отражающие кооперативные процессы в примембранной и центральной областях клеток. Показано, что характерные частоты изменений показателя преломления могут служить маркерами специфических клеточных процессов.
Ключевые слова: лазерная интерференционная микроскопия, вейвлет-анализ.
Wavelet-based analysis of cell dynamics measured by interference microscopy
Computer Research and Modeling, 2009, v. 1, no. 1, pp. 77-83Laser interference microscopy was used to study morphology and intracellular dynamics of erythrocytes, neurons and mast cells. We have found that changes of the local refractive index (RI) of cells have regular components that relate to the cooperative processes in the cellular submembrane and centre regions. We have shown that characteristic frequencies of RI dynamics differ for various cell types and can be used as markers of specific cellular processes.
Keywords: laser interference microscopy, wavelet-based analysis.Views (last year): 1. Citations: 5 (RSCI). -
Методы прогнозирования и модели распространения заболеваний
Компьютерные исследования и моделирование, 2013, т. 5, № 5, с. 863-882Число работ, посвященных прогнозированию инфекционной заболеваемости, стремительно растет по мере появления статистики, позволяющей провести анализ. В настоящей статье представлен обзор основных решений, доступных сегодня для формирования как краткосрочных, так и долгосрочных проекций заболеваемости; указаны их ограничения и возможности практического применения. Рассмотрены традиционные методы анализа временных рядов — регрессионные и авторегрессионные модели; подходы, опирающиеся на машинное обучение — байесовские сети и искусственные нейронные сети; рассуждения на основе прецедентов; техники, базирующиеся на решении задачи фильтрации. Перечислены важнейшие направления разработки математических моделей распространения заболевания: классические аналитические модели, детерминированные и стохастические, а также современные имитационные модели, сетевые и агентные.
Ключевые слова: прогнозирование заболеваемости, поточечные оценки, регрессионные модели, АРПСС, скрытые марковские модели, метод аналогий, экспоненциальное сглаживание, SIR, модель Барояна–Рвачева, клеточные автоматы, популяционные модели, агентные модели.
Forecasting methods and models of disease spread
Computer Research and Modeling, 2013, v. 5, no. 5, pp. 863-882Views (last year): 71. Citations: 19 (RSCI).The number of papers addressing the forecasting of the infectious disease morbidity is rapidly growing due to accumulation of available statistical data. This article surveys the major approaches for the shortterm and the long-term morbidity forecasting. Their limitations and the practical application possibilities are pointed out. The paper presents the conventional time series analysis methods — regression and autoregressive models; machine learning-based approaches — Bayesian networks and artificial neural networks; case-based reasoning; filtration-based techniques. The most known mathematical models of infectious diseases are mentioned: classical equation-based models (deterministic and stochastic), modern simulation models (network and agent-based).
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




