All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Исследование достижимости цели в медицинском квесте
Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1149-1179В работе представлено экспериментальное исследование древовидной структуры, возникающей при медицинском обследовании. При каждой встрече с медицинским специалистом пациент получает некоторое количество направлений на консультации других специалистов или на анализы. Возникает дерево направлений, каждую ветвь которого должен пройти пациент. В зависимости от разветвленности дерева оно может быть как конечным (и в этом случае обследование может быть завершено), так и бесконечным, когда цель пациента не может быть достигнута. В работе как экспериментально, так и теоретически изучаются критические свойства перехода системы из леса конечных деревьев в лес бесконечных в зависимости от вероятностных характеристик дерева.
Для описания предлагается модель, в которой дискретная функция вероятности числа ветвей на узле повторяет динамику непрерывного гауссового распределения. Характеристики распределения Гаусса (математическое ожидание $x_0$, среднеквадратичное отклонение $\sigma$) являются параметрами модели. В выбранной постановке задача относится к проблематике ветвящихся случайных процессов (ВСП) в неоднородной модели Гальтона – Ватсона.
Экспериментальное изучение проводится путем численного моделирования на конечных решетках. Построена фазовая диаграмма, определены границы областей различных фаз. Проведено сравнение с фазовой диаграммой, полученной из теоретических критериев для макросистем, установлено адекватное соответствие. Показано, что на конечных решетках переход является размытым.
Описание размытого фазового перехода проведено с помощью двух подходов. В первом (стандартном) подходе переход описывается с помощью так называемой функции включения, имеющей смысл доли одной из фаз в общем множестве. Установлено, что такой подход в данной системе неэффективен, поскольку найденное положение условной границы размытого перехода определяется только размером выбранной экспериментальной решетки и не несет объективного смысла.
Предлагается второй (оригинальный) подход, основанный на введении в рассмотрение параметра порядка, равного обратной средней высоте дерева, и анализа его поведения. Установлено, что динамика такого параметра порядка в сечениях $\sigma = \text{const}$ с очень небольшими отличиями имеет вид распределения Ферми – Дирака ($\sigma$ выполняет ту же функцию, что и температура для распределения Ферми – Дирака, $x_0$ — функцию энергии). Для параметра порядка подобрано эмпирическое выражение, введен и рассчитан аналог химического потенциала, который и имеет смысл характерного масштаба параметра порядка, то есть тех значений $x_0$, при которых условно можно считать, что порядок сменяется беспорядком. Этот критерий положен в основу определе- ния границы условного перехода в данном подходе. Установлено, что эта граница соответствует средней высоте дерева, равной двум поколениям. На основании обнаруженных свойств предложены рекомендации для медицинских учреждений, позволяющие контролировать обеспечение конечности траектории пациентов.
Рассмотренная модель и метод ее описания с помощью условно-бесконечных деревьев имеют приложение ко многим иерархическим системам. К таким системам можно отнести сети маршрутизации интернет-соединений, бюрократические сети, торговые, логистические сети, сети цитирования, игровые стратегии, задачи популяционной динамики и пр.
Ключевые слова: медицинское обследование, ветвящийся случайный процесс, модель Гальтона – Ватсона, размытые фазовые переходы, конечные системы, условно-бесконечные траектории, макросистема, функция включения, области почти чистых фаз, параметр порядка, химический потенциал, фазовая диаграмма, критическое поведение.
Research on the achievability of a goal in a medical quest
Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1149-1179The work presents an experimental study of the tree structure that occurs during a medical examination. At each meeting with a medical specialist, the patient receives a certain number of areas for consulting other specialists or for tests. A tree of directions arises, each branch of which the patient should pass. Depending on the branching of the tree, it can be as final — and in this case the examination can be completed — and endless when the patient’s goal cannot be achieved. In the work both experimentally and theoretically studied the critical properties of the transition of the system from the forest of the final trees to the forest endless, depending on the probabilistic characteristics of the tree.
For the description, a model is proposed in which a discrete function of the probability of the number of branches on the node repeats the dynamics of a continuous gaussian distribution. The characteristics of the distribution of the Gauss (mathematical expectation of $x_0$, the average quadratic deviation of $\sigma$) are model parameters. In the selected setting, the task refers to the problems of branching random processes (BRP) in the heterogeneous model of Galton – Watson.
Experimental study is carried out by numerical modeling on the final grilles. A phase diagram was built, the boundaries of areas of various phases are determined. A comparison was made with the phase diagram obtained from theoretical criteria for macrosystems, and an adequate correspondence was established. It is shown that on the final grilles the transition is blurry.
The description of the blurry phase transition was carried out using two approaches. In the first, standard approach, the transition is described using the so-called inclusion function, which makes the meaning of the share of one of the phases in the general set. It was established that such an approach in this system is ineffective, since the found position of the conditional boundary of the blurred transition is determined only by the size of the chosen experimental lattice and does not bear objective meaning.
The second, original approach is proposed, based on the introduction of an parameter of order equal to the reverse average tree height, and the analysis of its behavior. It was established that the dynamics of such an order parameter in the $\sigma = \text{const}$ section with very small differences has the type of distribution of Fermi – Dirac ($\sigma$ performs the same function as the temperature for the distribution of Fermi – Dirac, $x_0$ — energy function). An empirical expression has been selected for the order parameter, an analogue of the chemical potential is introduced and calculated, which makes sense of the characteristic scale of the order parameter — that is, the values of $x_0$, in which the order can be considered a disorder. This criterion is the basis for determining the boundary of the conditional transition in this approach. It was established that this boundary corresponds to the average height of a tree equal to two generations. Based on the found properties, recommendations for medical institutions are proposed to control the provision of limb of the path of patients.
The model discussed and its description using conditionally-infinite trees have applications to many hierarchical systems. These systems include: internet routing networks, bureaucratic networks, trade and logistics networks, citation networks, game strategies, population dynamics problems, and others.
-
Новый подход к самообучению для обнаружения видов деревьев с использованием гиперспектральных и лидарных данных
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1747-1763Точное определение деревьев имеет решающее значение для экологического мониторинга, оценки биоразнообразия и управления лесными ресурсами. Традиционные методы ручного обследования трудоемки и неэффективны на больших территориях. Достижения в области дистанционного зондирования, включая лидар и гиперспектральную съемку, способствуют автоматизированному и точному обнаружению в различных областях.
Тем не менее, эти технологии обычно требуют больших объемов размеченных данных и ручной инженерии признаков, что ограничивает их масштабируемость. Данное исследование предлагает новый метод самообучения (Self-Supervised Learning, SSL) с использованием архитектуры SimCLR для улучшения классификации видов деревьев на основе неразмеченных данных. Модель SSL автоматически обнаруживает сильные признаки, объединяя спектральные данные гиперспектральной съемки со структурными данными лидара, исключая необходимость ручного вмешательства.
Мы оцениваем производительность модели SSL по сравнению с традиционными классификаторами, такими как Random Forest (RF), Support Vector Machines (SVM), а также методами обучения с учителем, используя набор данных конкурса ECODSE, который включает как размеченные, так и неразмеченные образцы видов деревьев на биологической станции Ordway-Swisher во Флориде. Метод SSL показал значительно более высокую эффективность по сравнению с традиционными методами, продемонстрировав точность 97,5% по сравнению с 95,56% для Semi-SSL и 95,03% для CNN при обучении с учителем.
Эксперименты по выборке показали, что техника SSL остается эффективной при меньшем количестве размеченных данных, и модель достигает хорошей точности даже при наличии всего 20% размеченных образцов. Этот вывод демонстрирует практическое применение SSL в условиях недостаточного объема размеченных данных, таких как мониторинг лесов в больших масштабах.
Ключевые слова: самообучение, обнаружение видов деревьев, SimCLR, гиперспектральные изображения, лидарные данные.
Tree species detection using hyperspectral and Lidar data: A novel self-supervised learning approach
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1747-1763Accurate tree identification is essential for ecological monitoring, biodiversity assessment, and forest management. Traditional manual survey methods are labor-intensive and ineffective over large areas. Advances in remote sensing technologies including lidar and hyperspectral imaging improve automated, exact detection in many fields.
Nevertheless, these technologies typically require extensive labeled data and manual feature engineering, which restrict scalability. This research proposes a new method of Self-Supervised Learning (SSL) with the SimCLR framework to enhance the classification of tree species using unlabelled data. SSL model automatically discovers strong features by merging the spectral data from hyperspectral data with the structural data from LiDAR, eliminating the need for manual intervention.
We evaluate the performance of the SSL model against traditional classifiers, including Random Forest (RF), Support Vector Machines (SVM), and Supervised Learning methods, using a dataset from the ECODSE competition, which comprises both labeled and unlabeled samples of tree species in Florida’s Ordway-Swisher Biological Station. The SSL method has been demonstrated to be significantly more effective than traditional methods, with a validation accuracy of 97.5% compared to 95.56% for Semi-SSL and 95.03% for CNN in Supervised Learning.
Subsampling experiments showed that the SSL technique is still effective with less labeled data, with the model achieving good accuracy even with only 20% labeled data points. This conclusion demonstrates SSL’s practical applications in circumstances with insufficient labeled data, such as large-scale forest monitoring.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




