All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
- Views (last year): 27.
-
Моделирование специальных действий и борьбы с терроризмом
Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1467-1498Специальные действия (партизанские, антипартизанские, разведывательно-диверсионные, подрывные, контртеррористические, контрдиверсионные и др.) организуются и проводятся силами обеспечения правопорядка и вооруженными силами и направлены на защиту граждан и обеспечение национальной безопасности. С начала 2000-х гг. проблематика специальных действий привлекла внимание специалистов в области моделирования, социологов, физиков и представителей других наук. В настоящей статье даны обзор и характеристика работ в области моделирования специальных действий и борьбы с терроризмом. Работы классифицированы по методам моделирования (описательные, оптимизационные и теоретико-игровые), по видам и этапам действий, фазам управления (подготовка и ведение деятельности). Во втором разделе представлена классификация методов и моделей специальных действий и борьбы с терроризмом, дан краткий обзор описательных моделей. Рассмотрены метод географического профилирования, сетевые игры, модели динамики специальных действий, функция победы в боевых и специальных действиях (зависимость вероятности победы от соотношения сил и средств сторон). В третьем разделе рассмотрены игра «атакующий – защитник» и ее расширения: игра Штакельберга и игра безопасности Штакельберга, а также вопросы их применения в задачах обеспечения безопасности. В игре «атакующий – защитник» и играх безопасности известные работы классифицируются по следующим основаниям: последовательность ходов, количество игроков и их целевые функции, временной горизонт игры, степень рациональности игроков и их отношение к риску, степень информированности игроков. Четвертый раздел посвящен описанию игр патрулирования на графе с дискретным временем и одновременным выбором сторонами своих действий (для поиска оптимальных стратегий вычисляется равновесие Нэша). В пятом разделе рассмотрены теоретико-игровые модели обеспечения транспортной безопасности как приложения игр безопасности Штакельберга. Последний раздел посвящен обзору и характеристике ряда моделей обеспечения пограничной безопасности на двух фазах управления: подготовка и ведение деятельности. Рассмотрен пример эффективного взаимодействия подразделений береговой охраны с университетскими исследователями. Перспективными направлениями дальнейших исследований являются следующие: во-первых, моделирование контртеррористических и специальных операций по нейтрализации террористических и диверсионных групп с привлечением разноведомственных и разнородных сил и средств, во-вторых, комплексирование моделей по уровням и этапам циклов деятельности; в-третьих, разработка теоретико-игровых моделей борьбы с морским терроризмом и пиратством.
Ключевые слова: математическая модель, национальная безопасность, специальные действия, борьба с терроризмом, охрана границы, игра «атакующий – защитник», игры безопасности, равновесие Штакельберга.
Special action and counter-terrorism models
Computer Research and Modeling, 2024, v. 16, no. 6, pp. 1467-1498Special actions (guerrilla, anti-guerrilla, reconnaissance and sabotage, subversive, counter-terrorist, counter-sabotage, etc.) are organized and conducted by law enforcement and armed forces and are aimed at protecting citizens and ensuring national security. Since the early 2000s, the problems of special actions have attracted the attention of specialists in the field of modeling, sociologists, physicists and representatives of other sciences. This article reviews and characterizes the works in the field of modeling special actions and counterterrorism. The works are classified by modeling methods (descriptive, optimization and game-theoretic), by types and stages of actions, and by phases of management (preparation and conduct of activities). The second section presents a classification of methods and models for special actions and counterterrorism, and gives a brief overview of descriptive models. The method of geographic profiling, network games, models of dynamics of special actions, the function of victory in combat and special actions (the dependence of the probability of victory on the correlation of forces and means of the parties) are considered. The third section considers the “attacker – defender” game and its extensions: the Stackelberg game and the Stackelberg security game, as well as issues of their application in security tasks In the “attacker – defender” game and security games, known works are classified on the following grounds: the sequence of moves, the number of players and their target functions, the time horizon of the game, the degree of rationality of the players and their attitude to risk, the degree of awareness of the players. The fourth section is devoted to the description of patrolling games on a graph with discrete time and simultaneous choice by the parties of their actions (Nash equilibrium is computed to find optimal strategies). The fifth section deals with game-theoretic models of transportation security as applications of Stackelberg security games. The last section is devoted to the review and characterization of a number of models of border security in two phases of management: preparation and conduct of activities. An example of effective interaction between Coast Guard units and university researchers is considered. Promising directions for further research are the following: first, modeling of counter-terrorist and special operations to neutralize terrorist and sabotage groups with the involvement of multidepartmental and heterogeneous forces and means, second, complexification of models by levels and stages of activity cycles, third, development of game-theoretic models of combating maritime terrorism and piracy.
-
Модель обоснования направлений сосредоточения усилий пограничной охраны на уровне государства
Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 187-196Важнейшим принципом военной науки и пограничной безопасности является принцип сосредоточения основных усилий на главных направлениях и задачах. На тактическом уровне имеется множество математических моделей для вычисления оптимального распределения ресурса по направлениям и объектам, тогда как на уровне государства соответствующие модели отсутствуют. Используя статистические данные о результатах охраны границы США, вычислен параметр пограничной производственной функции экспоненциального типа, отражающий организационно-технологические возможности пограничной охраны. Производственная функция определяет зависимость вероятности задержания нарушителей от плотности пограничников на километр границы. Финансовые показатели в производственной функции не учитываются, поскольку бюджет на содержание пограничников и оборудование границы коррелирует с количеством пограничных агентов. Определена целевая функция пограничной охраны — суммарный предотвращенный ущерб от задержанных нарушителей с учетом их ожидаемой опасности для государства и общества, подлежащий максимизации. Используя условие Слейтера, найдено решение задачи — вычислены оптимальные плотности пограничной охраны по регионам государства. Имея модель распределения ресурсов, на примере трех пограничных регионов США решена и обратная задача — оценены угрозы в регионах по известному распределению ресурсов. Ожидаемая опасность от отдельного нарушителя на американо-канадской границе в 2–5 раз выше, чем от нарушителя на американо-мексиканской границе. Результаты расчетов соответствуют взглядам специалистов по безопасности США — на американо-мексиканской границе в основном задерживаются нелегальные мигранты, тогда как потенциальные террористы предпочитают использовать другие каналы проникновения в США (включая американо-канадскую границу), где риски быть задержанными минимальны. Также результаты расчетов соответствуют сложившейся практике охраны границы: в 2013 г. численность пограничников вне пунктов пропуска на американо-мексиканской границе увеличилась в 2 раза по сравнению с 2001 г., тогда как на американо-канадской границе — в 4 раза. Практика охраны границы и взгляды специалистов дают основания для утверждения о верификации модели.
Ключевые слова: пограничная безопасность, математическая модель, направление сосредоточения усилий, пограничная производственная функция, нарушители государственной границы, ожидаемая опасность, оптимальная плотность охраны, пограничная статистика.
The model of the rationale for the focus of border security efforts at the state level
Computer Research and Modeling, 2019, v. 11, no. 1, pp. 187-196Views (last year): 26.The most important principle of military science and border security is the principle of concentrating the main efforts on the main directions and tasks. At the tactical level, there are many mathematical models for computing the optimal resource allocation by directions and objects, whereas at the state level there are no corresponding models. Using the statistical data on the results of the protection of the US border, an exponential type border production function parameter is calculated that reflects the organizational and technological capabilities of the border guard. The production function determines the dependence of the probability of detaining offenders from the density of border guards per kilometer of the border. Financial indicators in the production function are not taken into account, as the border maintenance budget and border equipment correlate with the number of border agents. The objective function of the border guards is defined — the total prevented damage from detained violators taking into account their expected danger for the state and society, which is to be maximized. Using Slater's condition, the solution of the problem was found — optimal density of border guard was calculated for the regions of the state. Having a model of resource allocation, the example of the three border regions of the United States has also solved the reverse problem — threats in the regions have been assessed based on the known allocation of resources. The expected danger from an individual offender on the US-Canada border is 2–5 times higher than from an offender on the US-Mexican border. The results of the calculations are consistent with the views of US security experts: illegal migrants are mostly detained on the US-Mexican border, while potential terrorists prefer to use other channels of penetration into the US (including the US-Canadian border), where the risks of being detained are minimal. Also, the results of the calculations are consistent with the established practice of border protection: in 2013 the number of border guards outside the checkpoints on the US-Mexican border increased by 2 times compared with 2001, while on the American-Canadian border — 4 times. The practice of border protection and the views of specialists give grounds for approval of the verification of the model.
-
Охрана биоресурсов в морском прибрежном пространстве: математическая модель
Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1109-1125Охрана водных биоресурсов в морском прибрежном пространстве имеет существенные особенности (большое количество маломерных промысловых судов, динамизм обстановки, использование береговых средств охраны), в силу чего выделяется в отдельный класс прикладных задач. Представлена математическая модель охраны, предназначенная для определения состава средств обнаружения нарушителей и средств реализации обстановки в интересах обеспечения функции сдерживания незаконной деятельности. Решена тактическая теоретико-игровая задача: найден оптимальный рубеж патрулирования (стоянки) средств реализации (катеров охраны) и оптимальное удаление мест промысла нарушителей от берега. С использованием методов теории планирования эксперимента получены линейные регрессионные модели, позволяющие оценить вклад основных факторов, влияющих на результаты моделирования.
В интересах повышения устойчивости и адекватности модели предложено использовать механизм ранжирования средств охраны, основанный на границах и рангах Парето и позволяющий учесть принципы охраны и дополнительные характеристики средств охраны. Для учета изменчивости обстановки предложены несколько сценариев, по которым целесообразно выполнять расчеты.
Ключевые слова: морское прибрежное пространство, водные биоресурсы, математическая модель, оптимизационные задачи, механизм ранжирования, сценарный подход.
Protection of biological resources in the coastal area: the mathematical model
Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1109-1125Views (last year): 1. Citations: 1 (RSCI).Protection of aquatic biological resources in the coastal area has significant features (a large number of small fishing vessels, the dynamism of the situation, the use of coastal protection), by virtue of which stands in a class of applications. A mathematical model of protection designed for the determination of detection equipment and means of violators of the situation in order to ensure the function of deterrence of illegal activities. Resolves a tactical game-theoretic problem - find the optimal line patrol (parking) means of implementation (guard boats) and optimal removal of seats from the shore fishing violators. Using the methods of the theory of experimental design, linear regression models to assess the contribution of the main factors affecting the results of the simulation.
In order to enhance the sustainability and adequacy of the model is proposed to use the mechanism of rankings means of protection, based on the borders and the rank and Pareto allows to take into account the principles of protection and further means of protection. To account for the variability of the situation offered several scenarios in which it is advisable to perform calculations.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




