Результаты поиска по 'параметрическая идентификация математической модели':
Найдено статей: 8
  1. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1217-1219
    Editor’s note
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1217-1219
  2. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1099-1101
    Editor’s note
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1099-1101
  3. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 245-248
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 245-248
  4. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1037-1040
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1037-1040
  5. От редакции
    Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 757-760
    Editor’s note
    Computer Research and Modeling, 2025, v. 17, no. 5, pp. 757-760
  6. В работе рассматривается задача параметрической идентификации дискретных линейных стохастических систем, представленных уравнениями в пространстве состояний, с аддитивными и мультипликативными шумами. Предполагается, что уравнения состояния и измерения дискретной линейной стохастической системы зависят от неизвестного параметра, подлежащего идентификации.

    Представлен новый подход к построению градиентных методов параметрической идентификации в классе дискретных линейных стохастических систем с аддитивными и мультиплика- тивными шумами, основанный на применении модифицированной взвешенной ортогонализации Грама – Шмидта (MWGS) и алгоритмов дискретной фильтрации информационного типа.

    Основными теоретическими результатами данной работы являются: 1) новый критерий идентификации в терминах расширенного информационного LD-фильтра; 2) новый алгоритм вычисления значений производных по параметру неопределенности дискретной линейной стохастической системы в расширенном информационном LD-фильтре на основе прямой процедуры модифицированной взвешенной ортогонализации Грама – Шмидта; 3) новый метод вычисления градиента критерия идентификации на основе предложенного дифференцированного расширенного информационного LD-фильтра.

    Преимуществом предложенного подхода является применение численно устойчивой к ошибкам машинного округления MWGS-ортогонализации, лежащей в основе разработанных методов и алгоритмов. Информационный LD-фильтр сохраняет симметричность и положительную определенность информационных матриц. Разработанные алгоритмы имеют блочно-матричную структуру, удобную для компьютерной реализации.

    Все разработанные алгоритмы реализованы на языке MATLAB. Проведены серии численных экспериментов, результаты которых демонстрируют работоспособность предложенного подхода на примере решения задачи идентификации параметров математической модели сложной механической системы.

    Полученные результаты могут быть использованы для построения методов параметрической идентификации математических моделей, представленных в пространстве состояний дискретными линейными стохастическими системами с аддитивными и мультипликативными шумами.

    The paper considers the problem of parameter identification of discrete-time linear stochastic systems in the state space with additive and multiplicative noise. It is assumed that the state and measurements equations of a discrete-time linear stochastic system depend on an unknown parameter to be identified.

    A new approach to the construction of gradient parameter identification methods in the class of discrete-time linear stochastic systems with additive and multiplicative noise is presented, based on the application of modified weighted Gram – Schmidt orthogonalization (MWGS) and the discrete-time information-type filtering algorithms.

    The main theoretical results of this research include: 1) a new identification criterion in terms of an extended information filter; 2) a new algorithm for calculating derivatives with respect to an uncertainty parameter in a discrete-time linear stochastic system based on an extended information LD filter using the direct procedure of modified weighted Gram – Schmidt orthogonalization; and 3) a new method for calculating the gradient of identification criteria using a “differentiated” extended information LD filter.

    The advantages of this approach are that it uses MWGS orthogonalization which is numerically stable against machine roundoff errors, and it forms the basis of all the developed methods and algorithms. The information LD-filter maintains the symmetry and positive definiteness of the information matrices. The algorithms have an array structure that is convenient for computer implementation.

    All the developed algorithms were implemented in MATLAB. A series of numerical experiments were carried out. The results obtained demonstrated the operability of the proposed approach, using the example of solving the problem of parameter identification for a mathematical model of a complex mechanical system.

    The results can be used to develop methods for identifying parameters in mathematical models that are represented in state space by discrete-time linear stochastic systems with additive and multiplicative noise.

  7. Морозов А.Ю., Ревизников Д.Л.
    Параметрическая идентификация динамических систем на основе внешних интервальных оценок фазовых переменных
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 299-314

    Важную роль при построении математических моделей динамических систем играют обратные задачи, к которым, в частности, относится задача параметрической идентификации. В отличие от классических моделей, оперирующих точечными значениями, интервальные модели дают ограничения сверху и снизу на исследуемые величины. В работе рассматривается интерполяционный подход к решению интервальных задач параметрической идентификации динамических систем для случая, когда экспериментальные данные представлены внешними интервальными оценками. Цель предлагаемого подхода заключается в нахождении такой интервальной оценки параметров модели, при которой внешняя интервальная оценка решения прямой задачи моделирования содержала бы экспериментальные данные или минимизировала бы отклонение от них. В основе подхода лежит алгоритм адаптивной интерполяции для моделирования динамических систем с интервальными неопределенностями, позволяющий в явном виде получать зависимость фазовых переменных от параметров системы. Сформулирована задача минимизации расстояния между экспериментальными данными и модельным решением в пространстве границ интервальных оценок параметров модели. Получено выражение для градиента целевой функции. На репрезентативном наборе задач продемонстрированы эффективность и работоспособность предлагаемого подхода.

    Morozov A.Y., Reviznikov D.L.
    Parametric identification of dynamic systems based on external interval estimates of phase variables
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 299-314

    An important role in the construction of mathematical models of dynamic systems is played by inverse problems, which in particular include the problem of parametric identification. Unlike classical models that operate with point values, interval models give upper and lower boundaries on the quantities under study. The paper considers an interpolation approach to solving interval problems of parametric identification of dynamic systems for the case when experimental data are represented by external interval estimates. The purpose of the proposed approach is to find such an interval estimate of the model parameters, in which the external interval estimate of the solution of the direct modeling problem would contain experimental data or minimize the deviation from them. The approach is based on the adaptive interpolation algorithm for modeling dynamic systems with interval uncertainties, which makes it possible to explicitly obtain the dependence of phase variables on system parameters. The task of minimizing the distance between the experimental data and the model solution in the space of interval boundaries of the model parameters is formulated. An expression for the gradient of the objectivet function is obtained. On a representative set of tasks, the effectiveness of the proposed approach is demonstrated.

  8. Четырбоцкий В.А., Четырбоцкий А.Н.
    Задачи численного моделирования динамики системы «почва–растение»
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 445-465

    Рассмотрены современные математические модели динамики системы «почва–растение», составляющими которых выступают: растение сельскохозяйственного назначения, микроорганизмы ризосферы (прикорневой зоны растений), элементы минерального питания растений их подвижной и неподвижной форм. На основании анализа принятых положений разработана модель, в которой учитываются взаимосвязи и определенный согласованный характер совместных изменений ее составляющих. В частности, динамика содержащихся в растениях элементов их минерального питания и динамика биомассы растений определяются текущим содержанием в ризосфере внесенных сюда удобрений и отмершими продуктами жизнедеятельности ризосферных элементов (отмершие корни растений, опавшие листья (опад) и т. д.). Полагаются пространственная неподвижность растений и пространственная подвижность микро- организмов, механизм которой определяется здесь диффузией. Предлагаются формальные соотношения влияния суммарного воздействия на динамику растений сорняков (они характеризуют отдельный вид растений) и вредителей (они характеризуют отдельный вид микроорганизмов), где учитываются взаимные переходы элементов минерального питания из подвижной их формы в неподвижную. Для системы, где каждая из составляющих представлена только одним видом (удобрение, ассоциация микроорганизмов и растения представлены только одним видом), выполнено аналитическое исследование. Для однолетних культур сельскохозяйственного назначения разработана адаптация модели распространения волны в системе «ресурс–потребитель» (волны Колмогорова–Петровского–Пискунова). Реализация модели выполнена на примере динамики роста яровой пшеницы Красноуфимская-100 на торфяной низинной почве, куда предварительно были внесены фосфорные и калийные удобрения. Цифровой материал представлен массивом экспериментальных распределений биомассы растений и элементов минерального питания. Специфика экспериментального материала обусловила переход к модели, которая является редукцией сформулированной общей модели. Ее составляющими выступают распределение биомассы растений и содержание в них элементов минерального питания. Оценка адекватности модельных и экспериментальных распределений показала хорошую степень их соответствия.

    Chetyrbotskii V.A., Chetyrbotsky A.N.
    Problems of numerical simulation in the dynamics system “soil–plant”
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 445-465

    Modern mathematical models in the dynamics system “soil–plant” are considered. The components of this system are: agricultural plant, microorganisms of the rhizosphere (root zone of plants), the mineral nutrition elements of plants in their mobile and immobile forms. The model of submitted system based on the analysis of the adopted provisions was developed. The construction of system elements allows to display the coordinated dynamics of these elements among themselves. In particular, the dynamics of mineral nutrition elements in plants and the dynamics of their biomass are determined by the current contents in the rhizosphere of mineral fertilizers and organic origin substances (plant roots, leaves, etc.). The immobility of plants spatial distribution and the mobile spatial nature of microorganisms are assumed. This mechanism is determined by diffusion. Mutual relationships between weeds and pests are suggested. The dynamics of the mineral nutrition elements is determined by the peculiarity of sorption in the soil solution, environmental conditions, organic decomposition and fertilizer application. An analytical study for a system where each of the components is represented by only one species (fertilizer, the association of microorganisms and plants) was performed. An adaptation of the wave propagation model in the “resource–consumer” system (Kolmogorov–Petrovsky–Piskunov waves) has been developed for annual agricultural crops. The developed model has been adapted for the growth of Krasnoufimskaya-100 spring wheat in a vessel on peat lowland soil, where nitrogen, phosphorus, and potassium fertilizers were added variably. Sample distributions are plants biomass and the content of mineral nutrition elements in them. The parametric identification of the model and its adequacy was performed. An assessment of the model adequacy showed a good agreement between the model and experimental data.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"