All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Разработка сетевых вычислительных моделей для исследования нелинейных волновых процессов на графах
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 777-814В различных приложениях возникают задачи, моделируемые уравнениями в частных производных на графах (сетях, деревьях). Для исследования данных проблем и возникающих различных экстремальных ситуаций, для задач проектирования и оптимизации сетей различных типов в данной работе построена вычислительная модель, основанная на решении соответствующих краевых задач для нелинейных уравнений в частных производных гиперболического типа на графах (сетях, деревьях). В качестве приложений были выбраны три различные задачи, решаемые в рамках общего подхода сетевых вычислительных моделей. Первая — это моделирование движения транспортных потоков. При решении данной задачи использовался макроскопический подход, при котором транспортный поток описывается нелинейной системой гиперболических уравнений второго порядка. Проведенные расчеты и полученные результаты показали, что разработанная в рамках предложенного подхода модель хорошо воспроизводит реальную ситуацию на различных участках транспортной сети г. Москвы на значительных временных интервалах, а также может быть использована для выбора наиболее оптимальной стратегии организации дорожного движения в городе. Вторая — моделирование потоков данных в компьютерных сетях. В этой задаче потоки данных различных соединений в пакетной сети передачи данных моделировались в виде несмешивающихся потоков сплошной среды. Предложены концептуальная и математическая модели сети. Проведено численное моделирование в сравнении с системой имитационного моделирования сети NS-2. Полученные результаты показали, что в сравнении с пакетной моделью NS-2 разработанная нами потоковая модель демонстрирует значительную экономию вычислительных ресурсов, обеспечивая при этом хорошую степень подобия, и позволяет моделировать поведение сложных глобально распределенных IP-сетей передачи данных. Третья — моделирование распространения газовых примесей в вентиляционных сетях. Была разработана вычислительная математическая модель распространения мелкодисперсных или газовых примесей в вентиляционных сетях с использованием уравнений газовой динамики путем численного сопряжения областей разной размерности. Проведенные расчеты показали, что модель с хорошей точностью позволяет определять распределение газодинамических параметров в трубопроводной сети и решать задачи динамического управления вентиляцией.
Ключевые слова: уравнения в частных производных, графы, вычислительные модели, уравнения гиперболического типа, численное моделирование, граничные условия.
Development of network computational models for the study of nonlinear wave processes on graphs
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 777-814In various applications arise problems modeled by nonlinear partial differential equations on graphs (networks, trees). In order to study such problems and various extreme situations arose in the problems of designing and optimizing networks developed the computational model based on solving the corresponding boundary problems for partial differential equations of hyperbolic type on graphs (networks, trees). As applications, three different problems were chosen solved in the framework of the general approach of network computational models. The first was modeling of traffic flow. In solving this problem, a macroscopic approach was used in which the transport flow is described by a nonlinear system of second-order hyperbolic equations. The results of numerical simulations showed that the model developed as part of the proposed approach well reproduces the real situation various sections of the Moscow transport network on significant time intervals and can also be used to select the most optimal traffic management strategy in the city. The second was modeling of data flows in computer networks. In this problem data flows of various connections in packet data network were simulated as some continuous medium flows. Conceptual and mathematical network models are proposed. The numerical simulation was carried out in comparison with the NS-2 network simulation system. The results showed that in comparison with the NS-2 packet model the developed streaming model demonstrates significant savings in computing resources while ensuring a good level of similarity and allows us to simulate the behavior of complex globally distributed IP networks. The third was simulation of the distribution of gas impurities in ventilation networks. It was developed the computational mathematical model for the propagation of finely dispersed or gas impurities in ventilation networks using the gas dynamics equations by numerical linking of regions of different sizes. The calculations shown that the model with good accuracy allows to determine the distribution of gas-dynamic parameters in the pipeline network and solve the problems of dynamic ventilation management.
-
Теоретическое обоснование математических методов совместного оценивания параметров сигнала и шума при анализе райсовских данных
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 445-473В работе решается двухпараметрическая задача совместного расчета параметров сигнала и шума в условиях распределения Райса методами математической статистики: методом максимума правдоподобия и вариантами метода моментов. Рассматриваемые варианты метода моментов включают в себя совместный расчет сигнала и шума на основе измерений 2-го и 4-го моментов (ММ24) и на основе измерений 1-го и 2-го моментов (ММ12). В рамках каждого из рассматриваемых методов получены в явном виде системы уравнений для искомых параметров сигнала и шума. Важный математический результат проведенного исследования состоит в том, что решение системы двух нелинейных уравнений с двумя неизвестными — искомыми параметрами сигнала и шума — сведено к решению одного уравнения с одной неизвестной, что важно с точки зрения как теоретического исследования метода, так и его практического применения, позволяя существенно сократить необходимые для реализации метода вычислительные ресурсы. Задача является значимой для целей обработки райсовских данных, в частности, в системах магнитно-резонансной визуализации. В результате проведенного теоретического анализа получен важный практический вывод: решение двухпараметрической задачи не приводит к увеличению требуемых вычислительных ресурсов по сравнению с однопараметрическим приближением. Теоретические выводы подтверждаются результатами численного эксперимента.
Ключевые слова: функция плотности вероятности, распределение Райса, функция правдоподобия, метод максимума правдоподобия, метод моментов, отношение сигнала к шуму, дисперсия шума.
Theoretical substantiation of the mathematical techniques for joint signal and noise estimation at rician data analysis
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 445-473Views (last year): 2. Citations: 2 (RSCI).The paper provides a solution of the two-parameter task of joint signal and noise estimation at data analysis within the conditions of the Rice distribution by the techniques of mathematical statistics: the maximum likelihood method and the variants of the method of moments. The considered variants of the method of moments include the following techniques: the joint signal and noise estimation on the basis of measuring the 2-nd and the 4-th moments (MM24) and on the basis of measuring the 1-st and the 2-nd moments (MM12). For each of the elaborated methods the explicit equations’ systems have been obtained for required parameters of the signal and noise. An important mathematical result of the investigation consists in the fact that the solution of the system of two nonlinear equations with two variables — the sought for signal and noise parameters — has been reduced to the solution of just one equation with one unknown quantity what is important from the view point of both the theoretical investigation of the proposed technique and its practical application, providing the possibility of essential decreasing the calculating resources required for the technique’s realization. The implemented theoretical analysis has resulted in an important practical conclusion: solving the two-parameter task does not lead to the increase of required numerical resources if compared with the one-parameter approximation. The task is meaningful for the purposes of the rician data processing, in particular — the image processing in the systems of magnetic-resonance visualization. The theoretical conclusions have been confirmed by the results of the numerical experiment.
-
Ситуационное распределение ресурсов: обзор технологий решения задач на основе систем знаний
Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 543-566В обзоре представлены обновленные технологии решения двух классов линейных задач распределения ресурсов при динамично изменяющихся характеристиках систем ситуационного управления и информированности экспертов (и/или обучаемых роботов), решающих задачи. Поиск решений выполняется в интерактивном режиме вычислительного эксперимента с использованием обновляемых систем знаний о задачах, рассматриваемых как конструктивные объекты (в соответствии с методологией формализации знаний о программируемых задачах, созданной в теории S-символов). Технологии ориентированы на реализацию в виде интернет-сервисов. К первому классу отнесены задачи распределения ресурсов, решаемые методом целевого перемещения решения. Ко второму — задачи распределения одного ресурса в иерархических системах с учетом приоритетов расходных статьей, решаемые (в зависимости от заданных обязательных и ориентирующих требований к решению) или методом интервального распределения (при этом входные данные и результат представлены числовыми сегментами), или методом целевого перемещения решения. Постановки задач определяются требованиями к решениям и спецификацией их применимости, которые задает эксперт на основе результатов анализа портретов целевой и достигнутой ситуации. В отличие от известных методов решения задач распределения ресурсов как задач линейного программирования метод целевого перемещения решения нечувствителен к малым изменениям данных и позволяет находить наилучшие приближения к реализуемым решениям при несовместности системы ограничений. В технологиях распределения одного ресурса сегментное представление данных и результатов позволяет более адекватно (по сравнению с точечным представлением) отражать состояние ресурсного пространства системы и повышает практическую применимость решений. Обсуждаемые в статье технологии программно реализованы и применялись для решения задач ресурсного обоснования решений, бюджетного проектирования с учетом приоритетов расходных статей и др. Технология распределения одного ресурса реализована в виде действующего интернет-сервиса планирования расходов. Методологическая состоятельность технологий подтверждена результатами сравнения с известными технологиями решения рассматриваемых задач.
Ключевые слова: линейные задачи распределения ресурсов, технологии решения задач ситуационного распределения ресурсов, пространство ресурсного состояния системы, портреты ситуаций, обязательные и ориентирующие требования к решению, метод целевого перемещения решения, метод интервального распределения, теория S-символов.
Situational resource allocation: review of technologies for solving problems based on knowledge systems
Computer Research and Modeling, 2025, v. 17, no. 4, pp. 543-566The article presents updated technologies for solving two classes of linear resource allocation problems with dynamically changing characteristics of situational management systems and awareness of experts (and/or trained robots). The search for solutions is carried out in an interactive mode of computational experiment using updatable knowledge systems about problems considered as constructive objects (in accordance with the methodology of formalization of knowledge about programmable problems created in the theory of S-symbols). The technologies are focused on implementation in the form of Internet services. The first class includes resource allocation problems solved by the method of targeted solution movement. The second is the problems of allocating a single resource in hierarchical systems, taking into account the priorities of expense items, which can be solved (depending on the specified mandatory and orienting requirements for the solution) either by the interval method of allocation (with input data and result represented by numerical segments), or by the targeted solution movement method. The problem statements are determined by requirements for solutions and specifications of their applicability, which are set by an expert based on the results of the portraits of the target and achieved situations analysis. Unlike well-known methods for solving resource allocation problems as linear programming problems, the method of targeted solution movement is insensitive to small data changes and allows to find feasible solutions when the constraint system is incompatible. In single-resource allocation technologies, the segmented representation of data and results allows a more adequate (compared to a point representation) reflection of the state of system resource space and increases the practical applicability of solutions. The technologies discussed in the article are programmatically implemented and used to solve the problems of resource basement for decisions, budget design taking into account the priorities of expense items, etc. The technology of allocating a single resource is implemented in the form of an existing online cost planning service. The methodological consistency of the technologies is confirmed by the results of comparison with known technologies for solving the problems under consideration.
Keywords: linear resource allocation problems, technologies for solving situational resource allocation problems, states of system’s resource space, profiles of situations, mandatory and orienting requirements for solutions, method of targeted solution movement, interval method of allocation, theory of S-symbols.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




