Результаты поиска по 'рынок':
Найдено авторов: 2
  1. Rychkov V.N. (Рычков В.Н.)
  2. Rychkov V.N. (Рычков В.Н.)
Найдено статей: 39
  1. Стеряков А.А.
    Об одном универсальном методе построения моделей для сложных многоагентных систем
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 513-523

    Врабо те предлагается универсальный метод построения агентных имитационных моделей сложных систем, предполагающий их компьютерную реализацию на языках объектноориентированного программирования. Метод определяет способ построения математических моделей агентов и их взаимодействия, а также описывает архитектуру комплекса программ для имитации динамики моделируемой системы. Эффективность предлагаемого метода иллюстрируется примерами его применения для моделирования сложных систем из двух областей: экономической (модель финансового рынка с неоднородными агентами) и биологической (пространственно-временная имитация взаимодействия биологических популяций).

    Steryakov A.A.
    A universal method for constructing the simulation model of complex multi-agent systems
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 513-523

    This paper presents a universal method for constructing an agent-based model of complex systems for their further clear computer representation by means of object-oriented programming languages. The method specifies both steps of model developing from the mathematical description of the system to the determined architecture of the program simulating the system. The efficiency of the method is illustrated by the construction of the two simulation models for the complex systems of various origins: the interactive simulation of the stock exchange and space-time simulation of biological species competition.

    Views (last year): 5. Citations: 2 (RSCI).
  2. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 163-164
    Editor's note
    Computer Research and Modeling, 2018, v. 10, no. 2, pp. 163-164
    Views (last year): 6.
  3. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 733-735
    Editor's note
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 733-735
    Views (last year): 20.
  4. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 773-776
    Editor's note
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 773-776
  5. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 471-473
    Editor's note
    Computer Research and Modeling, 2020, v. 12, no. 3, pp. 471-473
  6. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 5-8
    Editor's note
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 5-8
  7. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1097-1100
    Editor’s note
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1097-1100
  8. От редакции
    Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 175-177
    Editor’s note
    Computer Research and Modeling, 2025, v. 17, no. 2, pp. 175-177
  9. Копысов С.П., Кузьмин И.М., Недожогин Н.С., Новиков А.К., Рычков В.Н., Сагдеева Ю.А., Тонков Л.Е.
    Параллельная реализация конечно-элементных алгоритмов на графических ускорителях в программном комплексе FEStudio
    Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 79-97

    Рассматриваются новые подходы и алгоритмы распараллеливания вычислений метода конечных элементов, реализованные в программном комплексе FEStudio. Представлена программная модель комплекса, позволяющая расширять возможности распараллеливания на различных уровнях вычислений. Разработаны параллельные алгоритмы численного интегрирования динамических задач и локальных матриц жесткости, формирования и решения систем уравнений с использованием модели параллелизма данных CUDA.

    Kopysov S.P., Kuzmin I.M., Nedozhogin N.S., Novikov A.K., Rychkov V.N., Sagdeeva Y.A., Tonkov L.E.
    Parallel implementation of a finite-element algorithms on a graphics accelerator in the software package FEStudio
    Computer Research and Modeling, 2014, v. 6, no. 1, pp. 79-97

    In this paper, we present new parallel algorithms for finite element analysis implemented in the FEStudio software framework. We describe the programming model of finite element method, which supports parallelism on different stages of numerical simulations. Using this model, we develop parallel algorithms of numerical integration for dynamic problems and local stiffness matrices. For constructing and solving the systems of equations, we use the CUDA programming platform.

    Views (last year): 4. Citations: 24 (RSCI).
  10. Любушин А.А., Фарков Ю.А.
    Синхронные компоненты финансовых временных рядов
    Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 639-655

    В статье предлагается метод совместного анализа многомерных финансовых временных рядов, основанный на оценке набора свойств котировок акций в скользящем временном окне и последующем усреднении значений свойств по всем анализируемым компаниям. Основной целью анализа является построение мер совместного поведения временных рядов, реагирующих на возникновение синхронной или когерентной составляющей. Когерентность поведения характеристик сложной системы является важным признаком, позволяющим оценить приближение системы к резким изменениям своего состояния. Фундаментом для поиска предвестников резких изменений является общая идея увеличения корреляции случайных флуктуаций параметров системы по мере ее приближения к критическому состоянию. Приращения временных рядов стоимостей акций имеют выраженный хаотический характер и обладают большой амплитудой индивидуальных помех, на фоне которых слабый общий сигнал может быть выделен лишь на основе его коррелированности в разных скалярных компонентах многомерного временного ряда. Известно, что классические методы анализа, основанные на использовании корреляций между соседними отсчетами, являются малоэффективными при обработке финансовых временных рядов, поскольку с точки зрения корреляционной теории случайных процессов приращения стоимости акций формально имеют все признаки белого шума (в частности, «плоский спектр» и «дельта-образную» автокорреляционную функцию). В связи с этим предлагается перейти от анализа исходных сигналов к рассмотрению последовательностей их нелинейных свойств, вычисленных во временных фрагментах малой длины. В качестве таких свойств используются энтропия вейвлет-коэффициентов при разложении в базис Добеши, показатели мультифрактальности и авторегрессионная мера нестационарности сигнала. Построены меры син- хронного поведения свойств временных рядов в скользящем временном окне с использованием метода главных компонент, значений модулей всех попарных коэффициентов корреляции и множественной спектральной меры когерентности, являющейся обобщением квадратичного спектра когерентности между двумя сигналами. Исследованы акции 16 крупных российских компаний с начала 2010 по конец 2016 годов. С помощью предложенного метода идентифицированы два интервала времени синхронизации российского фондового рынка: с середины декабря 2013 г. по середину марта 2014 г. и с середины октября 2014 г. по середину января 2016 г.

    Lyubushin A.A., Farkov Y.A.
    Synchronous components of financial time series
    Computer Research and Modeling, 2017, v. 9, no. 4, pp. 639-655

    The article proposes a method of joint analysis of multidimensional financial time series based on the evaluation of the set of properties of stock quotes in a sliding time window and the subsequent averaging of property values for all analyzed companies. The main purpose of the analysis is to construct measures of joint behavior of time series reacting to the occurrence of a synchronous or coherent component. The coherence of the behavior of the characteristics of a complex system is an important feature that makes it possible to evaluate the approach of the system to sharp changes in its state. The basis for the search for precursors of sharp changes is the general idea of increasing the correlation of random fluctuations of the system parameters as it approaches the critical state. The increments in time series of stock values have a pronounced chaotic character and have a large amplitude of individual noises, against which a weak common signal can be detected only on the basis of its correlation in different scalar components of a multidimensional time series. It is known that classical methods of analysis based on the use of correlations between neighboring samples are ineffective in the processing of financial time series, since from the point of view of the correlation theory of random processes, increments in the value of shares formally have all the attributes of white noise (in particular, the “flat spectrum” and “delta-shaped” autocorrelation function). In connection with this, it is proposed to go from analyzing the initial signals to examining the sequences of their nonlinear properties calculated in time fragments of small length. As such properties, the entropy of the wavelet coefficients is used in the decomposition into the Daubechies basis, the multifractal parameters and the autoregressive measure of signal nonstationarity. Measures of synchronous behavior of time series properties in a sliding time window are constructed using the principal component method, moduli values of all pairwise correlation coefficients, and a multiple spectral coherence measure that is a generalization of the quadratic coherence spectrum between two signals. The shares of 16 large Russian companies from the beginning of 2010 to the end of 2016 were studied. Using the proposed method, two synchronization time intervals of the Russian stock market were identified: from mid-December 2013 to mid- March 2014 and from mid-October 2014 to mid-January 2016.

    Views (last year): 12. Citations: 2 (RSCI).
Pages: next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"