All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Эффективный ранг задачи оценивания элемента функционального пространства по измерению с ошибкой конечного числа ее линейных функционалов
Компьютерные исследования и моделирование, 2014, т. 6, № 2, с. 189-202Решена задача восстановления элемента f бесконечномерного гильбертова пространства L2(X) по результатам измерений конечного набора его линейных функционалов, искаженным (случайной) погрешностью без априорных данных об f, получено семейство линейных подпространств максимальной размерности, проекции элемента f на которые допускают оценки с заданной точностью. Эффективный ранг ρ(δ) задачи оценивания определен как функция, равная максимальной размерности ортогональной составляющей Pf элемента f, которая может быть оценена с погрешностью, не превосходящей δ. Приведен пример восстановления спектра излучения по конечному набору экспериментальных данных.
Ключевые слова: математическая модель измерения, редукция измерения, спектрометрия, оптимальные решения, сингулярное разложение, эффективный ранг.
Effective rank of a problem of function estimation based on measurement with an error of finite number of its linear functionals
Computer Research and Modeling, 2014, v. 6, no. 2, pp. 189-202The problem of restoration of an element f of Euclidean functional space L2(X) based on the results of measurements of a finite set of its linear functionals, distorted by (random) error is solved. A priori data aren't assumed. Family of linear subspaces of the maximum (effective) dimension for which the projections of element f to them allow estimates with a given accuracy, is received. The effective rank ρ(δ) of the estimation problem is defined as the function equal to the maximum dimension of an orthogonal component Pf of the element f which can be estimated with a error, which is not surpassed the value δ. The example of restoration of a spectrum of radiation based on a finite set of experimental data is given.
-
Обесшумливание данных динамической флуоресцентной микроскопии при помощи двухэтапного HOSVD-разложения
Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 529-542Как правило, данные конфокальной и многофотонной лазерной сканирующей микроскопии страдают от низкого уровня полезного сигнала и высокого вклада дробового шума, связанного со стохастическим характером испускания фотонов флуорофором. Это осложняет задачу подавления шума и выделения полезного сигнала в таких данных. В настоящее время популярны нейросетевые алгоритмы улучшения изображений, однако они часто представляют собой «черный ящик» и требуют длительного обучения на конкретных наборах данных. В работе предлагается алгоритм подавления шума для данных динамической флуоресцентной микроскопии, опирающийся на наличие пространственно-временных локальных корреляций в полезном сигнале и на отсутствие пространственных корреляций в шумовой компоненте. Сингулярное разложение матриц (SVD), производящее спектральное разложение матрицы ковариации, — распространенный способ низкоранговой аппроксимации двумерных массивов, концентрирующий скоррелированный сигнал в нескольких первых компонентах разложения. Однако данные динамической микроскопии представляют собой трехмерные массивы или тензоры большей размерности, поэтому использование тензорных разложений потенциально может улучшить результат подавления шума по сравнению с обычным SVD. В основе алгоритма — двухэтапное применение усеченного сингулярного разложения высшего порядка (HOSVD) с введением порога для коэффициентов и последующим обратным преобразованием, сначала для локальных трехмерных окон в пространстве TXY (3D-HOSVD), а затем для пространственно объединенных групп трехмерных окон (4D-HOSVD). Для валидации алгоритма используются синтетические данные кальциевой сигнализации в астроцитах, в которых концентрация кальция транслируется в сигнал флуоресценции, значения которого в каждом кадре и каждом пикселе затем служат математическим ожиданием и дисперсией для сэмплирования случайной величины из непрерывного аналога пуассоновского распределения. Проведен анализ чувствительности алгоритма от параметров понижения ранга вдоль размерности временных компонент и группового ранга, длины локального окна и порога коэффициентов разложения. Несмотря на наличие мультипликативного шума, предлагаемый алгоритм демонстрирует значительное улучшение анализируемого сигнала, увеличивая соотношение «сигнал/шум» (PSNR) более чем на 20 дБ. Данный метод не опирается на предположения относительно разреженности или гладкости сигнала и может быть использован в качестве одного из этапов обработки данных динамической флуоресцентной микроскопии для самых различных типов данных.
Denoising fluorescent imaging data with two-step truncated HOSVD
Computer Research and Modeling, 2025, v. 17, no. 4, pp. 529-542Fluorescent imaging data are currently widely used in neuroscience and other fields. Genetically encoded sensors, based on fluorescent proteins, provide a wide inventory enabling scientiests to image virtually any process in a living cell and extracellular environment. However, especially due to the need for fast scanning, miniaturization, etc, the imaging data can be severly corrupred with multiplicative heteroscedactic noise, reflecting stochastic nature of photon emission and photomultiplier detectors. Deep learning architectures demonstrate outstanding performance in image segmentation and denoising, however they can require large clean datasets for training, and the actual data transformation is not evident from the network architecture and weight composition. On the other hand, some classical data transforms can provide for similar performance in combination with more clear insight in why and how it works. Here we propose an algorithm for denoising fluorescent dynamical imaging data, which is based on multilinear higher-order singular value decomposition (HOSVD) with optional truncation in rank along each axis and thresholding of the tensor of decomposition coefficients. In parallel, we propose a convenient paradigm for validation of the algorithm performance, based on simulated flurescent data, resulting from biophysical modeling of calcium dynamics in spatially resolved realistic 3D astrocyte templates. This paradigm is convenient in that it allows to vary noise level and its resemblance of the Gaussian noise and that it provides ground truth fluorescent signal that can be used to validate denoising algorithms. The proposed denoising method employs truncated HOSVD twice: first, narrow 3D patches, spanning the whole recording, are processed (local 3D-HOSVD stage), second, 4D groups of 3D patches are collaboratively processed (non-local, 4D-HOSVD stage). The effect of the first pass is twofold: first, a significant part of noise is removed at this stage, second, noise distribution is transformed to be more Gaussian-like due to linear combination of multiple samples in the singular vectors. The effect of the second stage is to further improve SNR. We perform parameter tuning of the second stage to find optimal parameter combination for denoising.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




