Результаты поиска по 'скорость сходимости':
Найдено статей: 60
  1. Гасников А.В., Ковалёв Д.А.
    Гипотеза об оптимальных оценках скорости сходимости численных методов выпуклой оптимизации высоких порядков
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 305-314

    В данной работе приводятся нижние оценки скорости сходимости для класса численных методов выпуклой оптимизации первого порядка и выше, т. е. использующих градиент и старшие производные. Обсуждаются вопросы достижимости данных оценок. Приведенные в статье оценки замыкают известные на данный момент результаты в этой области. Отметим, что замыкание осуществляется без должного обоснования, поэтому в той общности, в которой данные оценки приведены в статье, их стоит понимать как гипотезу. Опишембо лее точно основной результат работы. Пожалуй, наиболее известнымм етодом второго порядка является метод Ньютона, использующий информацию о градиенте и матрице Гессе оптимизируемой функции. Однако даже для сильно выпуклых функций метод Ньютона сходится лишь локально. Глобальная сходимость метода Ньютона обеспечивается с помощью кубической регуляризации оптимизируемой на каждом шаге квадратичной модели функции [Nesterov, Polyak, 2006]. Сложность решения такой вспомогательной задачи сопоставима со сложностью итерации обычного метода Ньютона, т. е. эквивалентна по порядку сложности обращения матрицы Гессе оптимизируемой функции. В 2008 году Ю. Е. Нестеровымбыл предложен ускоренный вариант метода Ньютона с кубической регуляризацией [Nesterov, 2008]. В 2013 г. Monteiro – Svaiter сумели улучшить оценку глобальной сходимости ускоренного метода с кубической регуляризацией [Monteiro, Svaiter, 2013]. В 2017 году Arjevani – Shamir – Shiff показали, что оценка Monteiro – Svaiter оптимальна (не может быть улучшена более чем на логарифми- ческий множитель на классе методов 2-го порядка) [Arjevani et al., 2017]. Также удалось получить вид нижних оценок для методов порядка $p ≥ 2$ для задач выпуклой оптимизации. Отметим, что при этом для сильно выпуклых функций нижние оценки были получены только для методов первого и второго порядка. В 2018 году Ю. Е. Нестеров для выпуклых задач оптимизации предложил методы 3-го порядка, которые имеют сложность итерации сопоставимую со сложностью итерации метода Ньютона и сходятся почти по установленным нижним оценкам [Nesterov, 2018]. Таким образом, было показано, что методы высокого порядка вполне могут быть практичными. В данной работе приводятся нижние оценки для методов высокого порядка $p ≥ 3$ для сильно выпуклых задач безусловной оптимизации. Работа также может рассматриваться как небольшой обзор современного состояния развития численных методов выпуклой оптимизации высокого порядка.

    Gasnikov A.V., Kovalev D.A.
    A hypothesis about the rate of global convergence for optimal methods (Newton’s type) in smooth convex optimization
    Computer Research and Modeling, 2018, v. 10, no. 3, pp. 305-314

    In this paper we discuss lower bounds for convergence of convex optimization methods of high order and attainability of this bounds. We formulate a hypothesis that covers all the cases. It is noticeable that we provide this statement without a proof. Newton method is the most famous method that uses gradient and Hessian of optimized function. However, it converges locally even for strongly convex functions. Global convergence can be achieved with cubic regularization of Newton method [Nesterov, Polyak, 2006], whose iteration cost is comparable with iteration cost of Newton method and is equivalent to inversion of Hessian of optimized function. Yu.Nesterov proposed accelerated variant of Newton method with cubic regularization in 2008 [Nesterov, 2008]. R.Monteiro and B. Svaiter managed to improve global convergence of cubic regularized method in 2013 [Monteiro, Svaiter, 2013]. Y.Arjevani, O. Shamir and R. Shiff showed that convergence bound of Monteiro and Svaiter is optimal (cannot be improved by more than logarithmic factor with any second order method) in 2017 [Arjevani et al., 2017]. They also managed to find bounds for convex optimization methods of p-th order for $p ≥ 2$. However, they got bounds only for first and second order methods for strongly convex functions. In 2018 Yu.Nesterov proposed third order convex optimization methods with rate of convergence that is close to this lower bounds and with similar to Newton method cost of iteration [Nesterov, 2018]. Consequently, it was showed that high order methods can be practical. In this paper we formulate lower bounds for p-th order methods for $p ≥ 3$ for strongly convex unconstrained optimization problems. This paper can be viewed as a little survey of state of the art of high order optimization methods.

    Views (last year): 21. Citations: 1 (RSCI).
  2. Рукавишников В.А., Мосолапов А.О.
    Весовой векторный метод конечных элементов и его приложения
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 71-86

    Математические модели многих естественных процессов описываются дифференциальными уравнениями с особенностями решения. Классические численные методы для нахождения приближенного решения таких задач оказываются неэффективными. В настоящей работе рассмотрена краевая задача для векторного волнового уравнения в двумерной L-образной области. Наличие входящего угла величиной  $3\pi/2$ на границе расчетной области обусловливает сильную сингулярность задачи, то есть ее решение не принадлежит пространству Соболева $H^1$, в результате чего классические и специализированные численные методы имеют скорость сходимости ниже чем $O(h)$. Поэтому в работе введено специальное весовое множество вектор-функций. В этом множестве решение рассматриваемой краевой задачи определено как $R_ν$-обобщенное.

    Для численного нахождения $R_ν$-обобщенного решения построен весовой векторный метод конечных элементов. Основным отличием этого метода является введение в базисные функции в качестве сомножителя специальной весовой функции в степени, определяемой свойствами решения исходной краевой задачи. Это позволило существенно повысить скорость сходимости приближенного решения к точному при измельчении конечноэлементной сетки. Кроме того, введенные базисные функции соленоидальны, что обеспечило точный учет условия соленоидальности искомого решения и предотвратило появление ложных численных решений.

    Представлены результаты численного эксперимента для серии модельных задач различных типов: для задач, решение которых содержит только сингулярную составляющую, и для задач, решение которых содержит как сингулярную, так и регулярную составляющие. Результаты численного анализа показали, что при измельчении конечноэлементной сетки скорость сходимости построенного весового векторного метода конечных элементов составляет $O(h)$, что по порядку степени в полтора раза выше, чем в разработанных к настоящему времени специализированных методах решения рассматриваемой задачи: методе сингулярных дополнений и методе регуляризации. Другие особенности построенного метода — его алгоритмическая простота и естественность определения решения, что является преимуществом при проведении численных расчетов.

    Rukavishnikov V.A., Mosolapov A.O.
    Weighthed vector finite element method and its applications
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 71-86

    Mathematical models of many natural processes are described by partial differential equations with singular solutions. Classical numerical methods for determination of approximate solution to such problems are inefficient. In the present paper a boundary value problem for vector wave equation in L-shaped domain is considered. The presence of reentrant corner of size $3\pi/2$ on the boundary of computational domain leads to the strong singularity of the solution, i.e. it does not belong to the Sobolev space $H^1$ so classical and special numerical methods have a convergence rate less than $O(h)$. Therefore in the present paper a special weighted set of vector-functions is introduced. In this set the solution of considered boundary value problem is defined as $R_ν$-generalized one.

    For numerical determination of the $R_ν$-generalized solution a weighted vector finite element method is constructed. The basic difference of this method is that the basis functions contain as a factor a special weight function in a degree depending on the properties of the solution of initial problem. This allows to significantly raise a convergence speed of approximate solution to the exact one when the mesh is refined. Moreover, introduced basis functions are solenoidal, therefore the solenoidal condition for the solution is taken into account precisely, so the spurious numerical solutions are prevented.

    Results of numerical experiments are presented for series of different type model problems: some of them have a solution containing only singular component and some of them have a solution containing a singular and regular components. Results of numerical experiment showed that when a finite element mesh is refined a convergence rate of the constructed weighted vector finite element method is $O(h)$, that is more than one and a half times better in comparison with special methods developed for described problem, namely singular complement method and regularization method. Another features of constructed method are algorithmic simplicity and naturalness of the solution determination that is beneficial for numerical computations.

    Views (last year): 37.
  3. Стонякин Ф.С., Степанов А.Н., Гасников А.В., Титов А.А.
    Метод зеркального спуска для условных задач оптимизации с большими значениями норм субградиентов функциональных ограничений
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 301-317

    В работе рассмотрена задача минимизации выпуклого и, вообще говоря, негладкого функционала $f$ при наличии липшицевого неположительного выпуклого негладкого функционального ограничения $g$. При этом обоснованы оценки скорости сходимости методов адаптивного зеркального спуска также и для случая квазивыпуклого целевого функционала в случае выпуклого функционального ограничения. Предложен также метод и для задачи минимизации квазивыпуклого целевого функционала с квазивыпуклым неположительным функционалом ограничения. В работе предложен специальный подход к выбору шагов и количества итераций в алгоритме зеркального спуска для рассматриваемого класса задач. В случае когда значения норм (суб)градиентов функциональных ограничений достаточно велики, предложенный подход к выбору шагов и остановке метода может ускорить работу метода по сравнению с его аналогами. В работе приведены численные эксперименты, демонстрирующие преимущества использования таких методов. Также показано, что методы применимы к целевым функционалам различных уровней гладкости. В частности, рассмотрен класс гёльдеровых целевых функционалов. На базе техники рестартов для рассмотренного варианта метода зеркального спуска был предложен оптимальный метод решения задач оптимизации с сильно выпуклыми целевыми функционалами. Получены оценки скорости сходимости рассмотренных алгоритмов для выделенных классов оптимизационных задач. Доказанные оценки демонстрируют оптимальность рассматриваемых методов с точки зрения теории нижних оракульных оценок.

    Stonyakin F.S., Stepanov A.N., Gasnikov A.V., Titov A.A.
    Mirror descent for constrained optimization problems with large subgradient values of functional constraints
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 301-317

    The paper is devoted to the problem of minimization of the non-smooth functional $f$ with a non-positive non-smooth Lipschitz-continuous functional constraint. We consider the formulation of the problem in the case of quasi-convex functionals. We propose new strategies of step-sizes and adaptive stopping rules in Mirror Descent for the considered class of problems. It is shown that the methods are applicable to the objective functionals of various levels of smoothness. Applying a special restart technique to the considered version of Mirror Descent there was proposed an optimal method for optimization problems with strongly convex objective functionals. Estimates of the rate of convergence for the considered methods are obtained depending on the level of smoothness of the objective functional. These estimates indicate the optimality of the considered methods from the point of view of the theory of lower oracle bounds. In particular, the optimality of our approach for Höldercontinuous quasi-convex (sub)differentiable objective functionals is proved. In addition, the case of a quasiconvex objective functional and functional constraint was considered. In this paper, we consider the problem of minimizing a non-smooth functional $f$ in the presence of a Lipschitz-continuous non-positive non-smooth functional constraint $g$, and the problem statement in the cases of quasi-convex and strongly (quasi-)convex functionals is considered separately. The paper presents numerical experiments demonstrating the advantages of using the considered methods.

  4. Рукавишников В.А., Рукавишников А.В.
    Метод численного решения одной стационарной задачи гидродинамики в конвективной форме в $L$-образной области
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1291-1306

    Большой класс задач описывает физические процессы, протекающие в невыпуклых областях, содержащих угол больший 180 градусов на границе. Решение в окрестности такого угла сингулярно, а его отыскание, при использовании классических подходов, влечет за собой потерю точности. В представленной работе рассмотрены стационарные, линеаризованные с помощью итераций Пикара несжимаемые уравнения Навье – Стокса течения вязкой жидкости в конвективной форме в $L$-образной области. Определено $R_\nu$-обобщенное решение задачи в специальных множествах весовых пространств. Для нахождения приближенного $R_\nu$-обобщенного решения построен специальный метод конечных элементов. Во-первых, пространства конечно-элементных функций удовлетворяют закону сохранения массы в сильном смысле, то есть в узлах сетки. Для этой цели используется Скотт – Вогелиус конечно-элементная пара. Выполнение закона сохранения массы ведет к отысканию более точного с физической точки зрения решения. Во-вторых, базисные функции конечномерных пространств дополнены весовыми функциями как множителями, которые совпадают с расстоянием от точки до вершины тупого угла в $\delta$-окрестности точки сингулярности и радиусом $\delta$ вне ее. Степень весовой функции, как и параметр $\nu$ в определении $R_\nu$-обобщенного решения, так и радиус $\delta$-окрестности точки сингулярности являются свободными параметрами метода. Специально подобранная их комбинация приводит к увеличению порядка сходимости приближенного решения к точному решению задачи почти в два раза по сравнению с классическими подходами и достигает единицы по шагу сетки в нормах весовых пространств Соболева. Таким образом, установлено, что скорость сходимости не зависит от величины угла.

    Rukavishnikov V.A., Rukavishnikov A.V.

    The method of numerical solution of the one stationary hydrodynamics problem in convective form in $L$-shaped domain
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1291-1306

    An essential class of problems describes physical processes occurring in non-convex domains containing a corner greater than 180 degrees on the boundary. The solution in a neighborhood of a corner is singular and its finding using classical approaches entails a loss of accuracy. In the paper, we consider stationary, linearized by Picard’s iterations, Navier – Stokes equations governing the flow of a incompressible viscous fluid in the convection form in $L$-shaped domain. An $R_\nu$-generalized solution of the problem in special sets of weighted spaces is defined. A special finite element method to find an approximate $R_\nu$-generalized solution is constructed. Firstly, functions of the finite element spaces satisfy the law of conservation of mass in the strong sense, i.e. at the grid nodes. For this purpose, Scott – Vogelius element pair is used. The fulfillment of the condition of mass conservation leads to the finding more accurate, from a physical point of view, solution. Secondly, basis functions of the finite element spaces are supplemented by weight functions. The degree of the weight function, as well as the parameter $\nu$ in the definition of an $R_\nu$-generalized solution, and a radius of a neighborhood of the singularity point are free parameters of the method. A specially selected combination of them leads to an increase almost twice in the order of convergence rate of an approximate solution to the exact one in relation to the classical approaches. The convergence rate reaches the first order by the grid step in the norms of Sobolev weight spaces. Thus, numerically shown that the convergence rate does not depend on the corner value.

  5. Гладин Е.Л., Зайнуллина К.Э.
    Метод эллипсоидов для задач выпуклой стохастической оптимизации малой размерности
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1137-1147

    В статье рассматривается задача минимизации математического ожидания выпуклой функции. Задачи такого вида повсеместны в машинном обучении, а также часто возникают в ряде других приложений. На практике для их решения обычно используются процедуры типа стохастического градиентного спуска (SGD). В нашей работе предлагается решать такие задачи с использованием метода эллипсоидов с мини-батчингом. Алгоритм имеет линейную скорость сходимости и может оказаться эффективнее SGD в ряде задач. Это подтверждается в наших экспериментах, исходный код которых находится в открытом доступе. Для получения линейной скорости сходимости метода не требуется ни гладкость, ни сильная выпуклость целевой функции. Таким образом, сложность алгоритма не зависит от обусловленности задачи. В работе доказывается, что метод эллипсоидов с наперед заданной вероятностью находит решение с желаемой точностью при использовании мини-батчей, размер которых пропорционален точности в степени -2. Это позволяет выполнять алгоритм параллельно на большом числе процессоров, тогда как возможности для батчараллелизации процедур типа стохастического градиентного спуска весьма ограничены. Несмотря на быструю сходимость, общее количество вычислений градиента для метода эллипсоидов может получиться больше, чем для SGD, который неплохо сходится и при маленьком размере батча. Количество итераций метода эллипсоидов квадратично зависит от размерности задачи, поэтому метод подойдет для относительно небольших размерностей.

    Gladin E.L., Zainullina K.E.
    Ellipsoid method for convex stochastic optimization in small dimension
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1137-1147

    The article considers minimization of the expectation of convex function. Problems of this type often arise in machine learning and a variety of other applications. In practice, stochastic gradient descent (SGD) and similar procedures are usually used to solve such problems. We propose to use the ellipsoid method with mini-batching, which converges linearly and can be more efficient than SGD for a class of problems. This is verified by our experiments, which are publicly available. The algorithm does not require neither smoothness nor strong convexity of the objective to achieve linear convergence. Thus, its complexity does not depend on the conditional number of the problem. We prove that the method arrives at an approximate solution with given probability when using mini-batches of size proportional to the desired accuracy to the power −2. This enables efficient parallel execution of the algorithm, whereas possibilities for batch parallelization of SGD are rather limited. Despite fast convergence, ellipsoid method can result in a greater total number of calls to oracle than SGD, which works decently with small batches. Complexity is quadratic in dimension of the problem, hence the method is suitable for relatively small dimensionalities.

  6. Базарова А.И., Безносиков А.Н., Гасников А.В.
    Линейно сходящиеся безградиентные методы для минимизации параболической аппроксимации
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 239-255

    Нахождение глобального минимума невыпуклых функций — одна из ключевых и самых сложных проблем современной оптимизации. В этой работе мы рассматриваем отдельные классы невыпуклых задач, которые имеют четкий и выраженный глобальный минимум.

    В первой части статьи мы рассматриваем два класса «хороших» невыпуклых функций, которые могут быть ограничены снизу и сверху параболической функцией. Такой класс задач не исследован широко в литературе, хотя является довольно интересным с прикладной точки зрения. Более того, для таких задач методы первого и более высоких порядков могут быть абсолютно неэффективны при поиске глобального минимума. Это связано с тем, что функция может сильно осциллировать или может быть сильно зашумлена. Поэтому наши новые методы используют информацию только нулевого порядка и основаны на поиске по сетке. Размер и мелкость этой сетки, а значит, и гарантии скорости сходимости и оракульной сложности зависят от «хорошести» задачи. В частности, мы показываем, если функция зажата довольно близкими параболическими функциями, то сложность не зависит от размерности задачи. Мы показываем, что наши новые методы сходятся с линейной скоростью сходимости $\log(1/\varepsilon)$ к глобальному минимуму на кубе.

    Во второй части статьи мы рассматриваем задачу невыпуклой оптимизации с другого ракурса. Мы предполагаем, что целевая минимизируемая функция есть сумма выпуклой квадратичной задачи и невыпуклой «шумовой» функции, пропорциональной по модулю расстоянию до глобального решения. Рассмотрение функций с такими предположениями о шуме для методов нулевого порядка является новым в литературе. Для такой задачи мы используем классический безградиентный подход с аппроксимацией градиента через конечную разность. Мы показываем, как можно свести анализ сходимости для нашей задачи к стандартному анализу для задач выпуклой оптимизации. В частности, и для таких задач мы добиваемся линейной скорости сходимости.

    Экспериментальные результаты подтверждают работоспособность и практическую применимость всех полученных методов.

    Bazarova A.I., Beznosikov A.N., Gasnikov A.V.
    Linearly convergent gradient-free methods for minimization of parabolic approximation
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 239-255

    Finding the global minimum of a nonconvex function is one of the key and most difficult problems of the modern optimization. In this paper we consider special classes of nonconvex problems which have a clear and distinct global minimum.

    In the first part of the paper we consider two classes of «good» nonconvex functions, which can be bounded below and above by a parabolic function. This class of problems has not been widely studied in the literature, although it is rather interesting from an applied point of view. Moreover, for such problems first-order and higher-order methods may be completely ineffective in finding a global minimum. This is due to the fact that the function may oscillate heavily or may be very noisy. Therefore, our new methods use only zero-order information and are based on grid search. The size and fineness of this grid, and hence the guarantee of convergence speed and oracle complexity, depend on the «goodness» of the problem. In particular, we show that if the function is bounded by fairly close parabolic functions, then the complexity is independent of the dimension of the problem. We show that our new methods converge with a linear convergence rate $\log(1/\varepsilon)$ to a global minimum on the cube.

    In the second part of the paper, we consider the nonconvex optimization problem from a different angle. We assume that the target minimizing function is the sum of the convex quadratic problem and a nonconvex «noise» function proportional to the distance to the global solution. Considering functions with such noise assumptions for zero-order methods is new in the literature. For such a problem, we use the classical gradient-free approach with gradient approximation through finite differences. We show how the convergence analysis for our problems can be reduced to the standard analysis for convex optimization problems. In particular, we achieve a linear convergence rate for such problems as well.

    Experimental results confirm the efficiency and practical applicability of all the obtained methods.

  7. В работе изучается многомерное уравнение конвекции-диффузии с переменными коэффициентами и неклассическим граничным условием. Рассмотрены два случая: в первом случае первое граничное условие содержит интеграл от неизвестной функции по переменной интегрирования $x_\alpha^{}$, а во втором случае — интеграл от неизвестной функции по переменной интегрирования $\tau$, обозначающий эффект памяти. Подобные задачи возникают при изучении переноса примеси вдоль русла рек. Для приближенного решения поставленной задачи предложена эффективная в плане экономичности, устойчивости и сходимости разностная схема — локально-одномерная разностная схема А.А. Самарского с порядком аппроксимации~$O(h^2+\tau)$. Ввиду того что уравнение содержит первую производную от неизвестной функции по пространственной переменной $x_\alpha^{}$, для повышения порядка точности локально-одномерной схемы используется известный метод, предложенный А.А. Самарским при построении монотонной схемы второго порядка точности по $h_\alpha^{}$ для уравнения параболического типа общего вида, содержащего односторонние производные, учитывающие знак $r_\alpha^{}(x,\,t)$. Для повышения до второго порядка точности по $h_\alpha^{}$ краевых условий третьего рода воспользовались уравнением в предположении, что оно справедливо и на границах. Исследование единственности и устойчивости решения проводилось с помощью метода энергетических неравенств. Получены априорные оценки решения разностной задачи в $L_2^{}$-норме, откуда следуют единственность решения, непрерывная и равномерная зависимость решения разностной задачи от входных данных, а также сходимость решения локально-одномерной разностной схемы к решению исходной дифференциальной задачи в $L_2^{}$-норме со скоростью, равной порядку аппроксимации разностной схемы. Для двумерной задачи построен алгоритм численного решения, проведены численные расчеты тестовых примеров, иллюстрирующие полученные в работе теоретические результаты.

    The paper studies a multidimensional convection-diffusion equation with variable coefficients and a nonclassical boundary condition. Two cases are considered: in the first case, the first boundary condition contains the integral of the unknown function with respect to the integration variable $x_\alpha^{}$, and in the second case, the integral of the unknown function with respect to the integration variable $\tau$, denoting the memory effect. Similar problems arise when studying the transport of impurities along the riverbed. For an approximate solution of the problem posed, a locally one-dimensional difference scheme by A.A. Samarskii with order of approximation $O(h^2+\tau)$. In view of the fact that the equation contains the first derivative of the unknown function with respect to the spatial variable $x_\alpha^{}$, the wellknown method proposed by A.A. Samarskii in constructing a monotonic scheme of the second order of accuracy in $h_\alpha^{}$ for a general parabolic type equation containing one-sided derivatives taking into account the sign of $r_\alpha^{}(x,t)$. To increase the boundary conditions of the third kind to the second order of accuracy in $h_\alpha^{}$, we used the equation, on the assumption that it is also valid at the boundaries. The study of the uniqueness and stability of the solution was carried out using the method of energy inequalities. A priori estimates are obtained for the solution of the difference problem in the $L_2^{}$-norm, which implies the uniqueness of the solution, the continuous and uniform dependence of the solution of the difference problem on the input data, and the convergence of the solution of the locally onedimensional difference scheme to the solution of the original differential problem in the $L_2^{}$-norm with speed equal to the order of approximation of the difference scheme. For a two-dimensional problem, a numerical solution algorithm is constructed.

  8. Сосин А.В., Сидоренко Д.А., Уткин П.С.
    Численное исследование взаимодействия ударной волны с подвижными вращающимися телами сложной формы
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 513-540

    Статья посвящена разработке вычислительного алгоритма метода декартовых сеток для исследования взаимодействия ударной волны с подвижными телами с кусочно-линейной границей. Интерес к подобным задачам связан с прямым численным моделированием течений двухфазных сред. Эффект формы частицы может иметь значение в задаче о диспергировании пылевого слоя за проходящей ударной волной. Экспериментальные данные по коэффициенту аэродинамического сопротивления несферических частиц практически отсутствуют.

    Математическая модель основана на двумерных уравнениях Эйлера, которые решаются в области с подвижными границами. Определяющая система уравнений численно интегрируется по явной схеме с использованием метода декартовых сеток. Вычислительный алгоритм на шаге интегрирования по времени включает: определение величины шага, расчет динамики движения тела (определение силы и момента, действующих на тело; определение линейной и угловой скоростей тела; расчет новых координат тела), расчет параметров газа. На каждом шаге интегрирования по времени все ячейки делятся на два класса — внешние (внутри тела или пересекаются его границами) и внутренние (целиком заполнены газом). Решение уравнений Эйлера строится только во внутренних. Основная сложность заключается в расчете численного потока через ребра, общие для внутренних и внешних ячеек, пересекаемых подвижными границами тел. Для расчета этого потока используются двухволновое приближение при решении задачи Римана и схема Стигера–Уорминга. Представлено подробное описание вычислительного алгоритма.

    Работоспособность алгоритма продемонстрирована на задаче о подъеме цилиндра с основанием в форме круга, эллипса и прямоугольника за проходящей ударной волной. Тест с круговым цилиндром рассмотрен во множестве статей, посвященных методам погруженной границы. Проведен качественный и количественный анализ траектории движения центра масс цилиндра на основании сравнения с результатами расчетов, представленными в восьми других работах. Для цилиндра с основанием в форме эллипса и прямоугольника получено удовлетворительное согласие по динамике его движения и вращения в сравнении с имеющимися немногочисленными литературными источниками. Для прямоугольника исследована сеточная сходимость результатов. Показано, что относительная погрешность выполнения закона сохранения суммарной массы газа в расчетной области убывает линейно при измельчении расчетной сетки.

    Sosin A.V., Sidorenko D.A., Utkin P.S.
    Numerical study of the interaction of a shock wave with moving rotating bodies with a complex shape
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 513-540

    The work is devoted to the development of a computational algorithm of the Cartesian grid method for studying the interaction of a shock wave with moving bodies with a piecewise linear boundary. The interest in such problems is connected with direct numerical simulation of two-phase media flows. The effect of the particle shape can be important in the problem of dust layer dispersion behind a passing shock wave. Experimental data on the coefficient of aerodynamic drag of non-spherical particles are practically absent.

    Mathematical model is based on the two-dimensional Euler equations, which are solved in a region with varying boundaries. The defining system of equations is integrated using an explicit scheme and the Cartesian grid method. The computational algorithm at the time integration step includes: determining the step value, calculating the dynamics of the body movement (determining the force and moment acting on the body; determining the linear and angular velocities of the body; calculating the new coordinates of the body), calculating the gas parameters. At each time step, all cells are divided into two classes – external (inside the body or intersected by its boundaries) and internal (completely filled with gas). The solution of the Euler equations is constructed only in the internal ones. The main difficulty is the calculation of the numerical flux through the edges common to the internal and external cells intersected by the moving boundaries of the bodies. To calculate this flux, we use a two-wave approximation for solving the Riemann problem and the Steger-Warming scheme. A detailed description of the numerical algorithm is presented.

    The efficiency of the algorithm is demonstrated on the problem of lifting a cylinder with a base in the form of a circle, ellipse and rectangle behind a passing shock wave. A circular cylinder test was considered in many papers devoted to the immersed boundary methods development. A qualitative and quantitative analysis of the trajectory of the cylinder center mass is carried out on the basis of comparison with the results of simulations presented in eight other works. For a cylinder with a base in the form of an ellipse and a rectangle, a satisfactory agreement was obtained on the dynamics of its movement and rotation in comparison with the available few literary sources. Grid convergence of the results is investigated for the rectangle. It is shown that the relative error of mass conservation law fulfillment decreases with a linear rate.

  9. Дегтярев А.А., Бахурин С.А.
    Компенсация собственных нелинейных помех на основе смешанного метода Ньютона
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1579-1592

    В статье исследуется одно из возможных решений задачи компенсации собственных помех (SIC, Self-Interference Cancellation), возникающей при проектировании полнодуплексных (IBFD, In-band Full-Duplex) систем связи. Подавление собственных помех осуществляется в цифровой области с помощью многослойных нелинейных моделей, которые адаптируются на основе метода градиентного спуска. Наличие локальных оптимумов и седловых точек при адаптации многослойных моделей делает невозможным использование методов второго порядка ввиду знаконеопределенности матрицы Гессе.

    В данной работе предложено использовать смешанный метод Ньютона (MNM, mixed Newton method), который учитывает информацию о смешанных производных второго порядка функции потерь и, как следствие, обеспечивает высокую скорость сходимости по сравнению с традиционными методами первого порядка. Использование лишь только смешанных частных производных второго порядка при построении матрицы Гессе позволяет избежать проблемы «застревания» в седловых точках при использовании смешанного метода Ньютона для адаптации многослойных нелинейных компенсаторов собственных помех при проектировании полнодуплексных систем связи.

    В качестве модели собственных нелинейных помех выбрана модель Гаммерштейна с комплексными параметрами. Данный выбор обусловлен тем, что модель эффективно описывает физические свойства, лежащие в основе формирования собственных помех. Благодаря свойству голоморфности выхода модели смешанный метод Ньютона обеспечивает свойство «отталкивания» от седловых точек в ландшафте функции потерь.

    В работе приводятся кривые сходимости при адаптации модели Гаммерштейна смешанным методом Ньютона, а также при помощи классических подходов на основе метода градиентного спуска. Кроме того, приводится вывод предложенного метода, а также оценка вычислительной сложности.

    Degtyarev A.A., Bakhurin S.A.
    Non-linear self-interference cancellation on base of mixed Newton method
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1579-1592

    The paper investigates a potential solution to the problem of Self-Interference Cancellation (SIC) encountered in the design of In-Band Full-Duplex (IBFD) communication systems. The suppression of selfinterference is implemented in the digital domain using multilayer nonlinear models adapted via the gradient descent method. The presence of local optima and saddle points in the adaptation of multilayer models prevents the use of second-order methods due to the indefinite nature of the Hessian matrix.

    This work proposes the use of the Mixed Newton Method (MNM), which incorporates information about the second-order mixed partial derivatives of the loss function, thereby enabling a faster convergence rate compared to traditional first-order methods. By constructing the Hessian matrix solely with mixed second-order partial derivatives, this approach mitigates the issue of “getting stuck” at saddle points when applying the Mixed Newton Method for adapting multilayer nonlinear self-interference compensators in full-duplex system design.

    The Hammerstein model with complex parameters has been selected to represent nonlinear selfinterference. This choice is motivated by the model’s ability to accurately describe the underlying physical properties of self-interference formation. Due to the holomorphic property of the model output, the Mixed Newton Method provides a “repulsion” effect from saddle points in the loss landscape.

    The paper presents convergence curves for the adaptation of the Hammerstein model using both the Mixed Newton Method and conventional gradient descent-based approaches. Additionally, it provides a derivation of the proposed method along with an assessment of its computational complexity.

  10. Котлярова Е.В., Гасников А.В., Гасникова Е.В., Ярмошик Д.В.
    Поиск равновесий в двухстадийных моделях распределения транспортных потоков по сети
    Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 365-379

    В работе описывается двухстадийная модель равновесного распределения транспортных потоков. Модель состоит из двух блоков, где первый блок — модель расчета матрицы корреспонденций, а второй блок — модель равновесного распределения транспортных потоков по путям. Первая модель, используя матрицу транспортных затрат (затраты на перемещение из одного района в другой, в данном случае — время), рассчитывает матрицу корреспонденций, описывающую потребности в объемах передвижения из одного района в другой район. Для решения этой задачи предлагается использовать один из наиболее популярных в урбанистике способов расчета матрицы корреспонценций — энтропийную модель. Вторая модель на базе равновесного принципа Нэша–Вардропа (каждый водитель выбирает кратчайший для себя путь) описывает, как именно потребности в перемещениях, задаваемые матрицей корреспонденций, распределяются по возможным путям. Таким образом, зная способы распределения потоков по путям, можно рассчитать матрицу затрат. Равновесием в двухстадийной модели транспортных потоков называют неподвижную точку цепочки из этих двух моделей. Практически ранее отмеченную задачу поиска неподвижной точки решали методом простых итераций. К сожалению, на данный момент вопрос сходимости и оценки скорости сходимости для этого метода не изучен. Кроме того, при численной реализации алгоритма возникает множество проблем. В частности, при неудачном выборе точки старта возникают ситуации, в которых алгоритм требует вычисления экстремально больших чисел и превышает размер доступной памяти даже в самых современных вычислительных машинах. Поэтому в статье предложены способ сведения задачи поиска описанного равновесия к задаче выпуклой негладкой оптимизации и численный способ решения полученной задачи оптимизации. Для обоих методов решения задачи были проведены численные эксперименты. Авторами использовались данные для Владивостока (для этого была обработана информация из различных источников и собрана в новый пакет) и двух небольших городов США. Методом простой прогонки двух блоков сходимости добиться не удалось, тогда как вторая модель для того же набора данных продемонстрировала скорость сходимости $k^{−1.67}$.

    Kotliarova E.V., Gasnikov A.V., Gasnikova E.V., Yarmoshik D.V.
    Finding equilibrium in two-stage traffic assignment model
    Computer Research and Modeling, 2021, v. 13, no. 2, pp. 365-379

    Authors describe a two-stage traffic assignment model. It contains of two blocks. The first block consists of a model for calculating a correspondence (demand) matrix, whereas the second block is a traffic assignment model. The first model calculates a matrix of correspondences using a matrix of transport costs (it characterizes the required volumes of movement from one area to another, it is time in this case). To solve this problem, authors propose to use one of the most popular methods of calculating the correspondence matrix in urban studies — the entropy model. The second model describes exactly how the needs for displacement specified by the correspondence matrix are distributed along the possible paths. Knowing the ways of the flows distribution along the paths, it is possible to calculate the cost matrix. Equilibrium in a two-stage model is a fixed point in the sequence of these two models. In practice the problem of finding a fixed point can be solved by the fixed-point iteration method. Unfortunately, at the moment the issue of convergence and estimations of the convergence rate for this method has not been studied quite thoroughly. In addition, the numerical implementation of the algorithm results in many problems. In particular, if the starting point is incorrect, situations may arise where the algorithm requires extremely large numbers to be computed and exceeds the available memory even on the most modern computers. Therefore the article proposes a method for reducing the problem of finding the equilibrium to the problem of the convex non-smooth optimization. Also a numerical method for solving the obtained optimization problem is proposed. Numerical experiments were carried out for both methods of solving the problem. The authors used data for Vladivostok (for this city information from various sources was processed and collected in a new dataset) and two smaller cities in the USA. It was not possible to achieve convergence by the method of fixed-point iteration, whereas the second model for the same dataset demonstrated convergence rate $k^{-1.67}$.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"