Результаты поиска по 'социально-информационные воздействия':
Найдено статей: 12
  1. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 357-359
    Editor's note
    Computer Research and Modeling, 2017, v. 9, no. 3, pp. 357-359
    Views (last year): 3.
  2. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 363-365
    Editor's note
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 363-365
    Views (last year): 20.
  3. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 773-776
    Editor's note
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 773-776
  4. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 939-942
    Editor's note
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 939-942
  5. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 669-671
    Editor's note
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 669-671
  6. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 581-584
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 581-584
  7. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1037-1040
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1037-1040
  8. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1341-1343
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 6, pp. 1341-1343
  9. Шумов В.В.
    Учет психологических факторов в моделях боя (конфликта)
    Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 951-964

    Ход и исход боя в значительной степени зависят от морального духа войск, характеризуемого процентом потерь (убитых и раненых), при котором войска еще продолжают сражаться. Всякий бой есть психологический акт, заканчивающийся отказом от него одной из сторон. Обычно в моделях боя психологический фактор учитывают в решении уравнений Ланчестера (условие равенства сил, когда численность одной из сторон обращается в ноль). При этом подчеркивается, что модели ланчестеровского типа удовлетворительно описывают динамику боя только на начальных его стадиях. Для разрешения данного противоречия предложено использовать модификацию уравнений Ланчестера, учитывающую тот факт, что в любой момент боя по противнику ведут огонь не пораженные и не отказавшиеся от сражения бойцы. Полученные дифференциальные уравнения решаются численным методом и позволяют в динамике учитывать влияние психологического фактора и оценивать время завершения конфликта. Вычислительные эксперименты подтверждают известный из военной теории факт, что бой обычно заканчивается отказом бойцов одной из сторон от его продолжения (уклонение от боя в различных формах). Наряду с моделями временно́й и пространственной динамики предложено ис- пользовать модификацию функции технологии конфликта С. Скапердаса, основанную на учете принципов боя. Для оценки вероятности победы одной из сторон в бою учитываются проценты выдерживаемых сторонами кровавых потерь и показатель боевого превосходства. Последний является средним геометрическим параметров, характеризующих всестороннее обеспечение боя, разведку, маневр и огонь. Анализ хода и исхода ряда военных компаний последних десятилетий показал, что процент выдерживаемых военных потерь резко снизился в странах с низким уровнем рождаемости. Наличие технологического превосходства над противником не гарантирует военного успеха, особенно в случае продолжительного конфликта. В этой связи представляются актуальными дальнейшие исследования, позволяющие количественно учесть вклад психологического фактора в ход и исход боя, а также учитывать влияние социально-психологических воздействий.

    Shumov V.V.
    Consideration of psychological factors in models of the battle (conflict)
    Computer Research and Modeling, 2016, v. 8, no. 6, pp. 951-964

    The course and outcome of the battle is largely dependent on the morale of the troops, characterized by the percentage of loss in killed and wounded, in which the troops still continue to fight. Every fight is a psychological act of ending his rejection of one of the parties. Typically, models of battle psychological factor taken into account in the decision of Lanchester equations (the condition of equality of forces, when the number of one of the parties becomes zero). It is emphasized that the model Lanchester type satisfactorily describe the dynamics of the battle only in the initial stages. To resolve this contradiction is proposed to use a modification of Lanchester's equations, taking into account the fact that at any moment of the battle on the enemy firing not affected and did not abandon the battle fighters. The obtained differential equations are solved by numerical method and allow the dynamics to take into account the influence of psychological factor and evaluate the completion time of the conflict. Computational experiments confirm the known military theory is the fact that the fight usually ends in refusal of soldiers of one of the parties from its continuation (avoidance of combat in various forms). Along with models of temporal and spatial dynamics proposed to use a modification of the technology features of the conflict of S. Skaperdas, based on the principles of combat. To estimate the probability of victory of one side in the battle takes into account the interest of the maturing sides of the bloody casualties and increased military superiority.

    Views (last year): 7. Citations: 4 (RSCI).
  10. Белотелов Н.В., Сушко Д.А.
    Агентная модель социальной динамики с использованием подходов роевого интеллекта
    Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1513-1527

    В работе рассматривается применение технологии роевого интеллекта для построения агентных имитационных моделей. В качестве примера построена минимальная модель, иллюстрирующая влияние информационных воздействий на правила поведения агентов в простейшей модели конкуренции между двумя популяциями, агенты которых выполняют простейшую задачу переноса ресурса из подвижного источника на свою территорию. Алгоритм движения агентов в пространстве модели реализован на основе классического алгоритма роя частиц. Агенты имеют жизненный цикл, то есть учитываются процессы рождения и гибели. В модели учитываются информационные процессы, которые определяют целевые функции поведения вновь появившихся агентов. Эти процессы (обучение и переманивание) определяются информационными воздействиями со стороны популяций. При определенных условиях в системе агентов возникает третья популяция. Агенты такой популяции информационно воздействуют на агентов остальных популяций в некотором радиусе вокруг себя, изменяя их правила поведения в соответствии со своими, что в определенных условиях вытесняет остальные популяции.

    В результате проведенных имитационных экспериментов было показано, что в системе реализуются следующие финальные состояния: вытеснение новой популяцией остальными, сосуществование новой популяции и остальных популяций и отсутствие такой популяции. Было показано, что с увеличением радиуса влияния агентов популяция с измененными правилами поведения вытесняет все остальные. Также показано, что в случае труднодоступного ресурса стратегия переманивания агентов конкурирующей популяции более выгодна.

    Belotelov N.V., Sushko D.A.
    An agent-based model of social dynamics using swarm intelligence approaches
    Computer Research and Modeling, 2024, v. 16, no. 6, pp. 1513-1527

    The paper considers the application of swarm intelligence technology to build agent-based simulation models. As an example, a minimal model is constructed illustrating the influence of information influences on the rules of behavior of agents in the simplest model of competition between two populations, whose agents perform the simplest task of transferring a resource from a mobile source to their territory. The algorithm for the movement of agents in the model space is implemented on the basis of the classical particle swarm algorithm. Agents have a life cycle, that is, the processes of birth and death are taken into account. The model takes into account information processes that determine the target functions of the behavior of newly appeared agents. These processes (training and poaching) are determined by information influences from populations. Under certain conditions, a third population arises in the agent system. Agents of such a population informatively influence agents of other populations in a certain radius around themselves, changing.

    As a result of the conducted simulation experiments, it was shown that the following final states are realized in the system: displacement of a new population by others, coexistence of a new population and other populations and the absence of such a population. It has been shown that with an increase in the radius of influence of agents, the population with changed rules of behavior displaces all others. It is also shown that in the case of a hard-to-access resource, the strategy of luring agents of a competing population is more profitable.

Pages: next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"