Результаты поиска по 'стохастическая матрица':
Найдено статей: 15
  1. Муравлев В.И., Браже А.Р.
    Обесшумливание данных динамической флуоресцентной микроскопии при помощи двухэтапного HOSVD-разложения
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 529-542

    Как правило, данные конфокальной и многофотонной лазерной сканирующей микроскопии страдают от низкого уровня полезного сигнала и высокого вклада дробового шума, связанного со стохастическим характером испускания фотонов флуорофором. Это осложняет задачу подавления шума и выделения полезного сигнала в таких данных. В настоящее время популярны нейросетевые алгоритмы улучшения изображений, однако они часто представляют собой «черный ящик» и требуют длительного обучения на конкретных наборах данных. В работе предлагается алгоритм подавления шума для данных динамической флуоресцентной микроскопии, опирающийся на наличие пространственно-временных локальных корреляций в полезном сигнале и на отсутствие пространственных корреляций в шумовой компоненте. Сингулярное разложение матриц (SVD), производящее спектральное разложение матрицы ковариации, — распространенный способ низкоранговой аппроксимации двумерных массивов, концентрирующий скоррелированный сигнал в нескольких первых компонентах разложения. Однако данные динамической микроскопии представляют собой трехмерные массивы или тензоры большей размерности, поэтому использование тензорных разложений потенциально может улучшить результат подавления шума по сравнению с обычным SVD. В основе алгоритма — двухэтапное применение усеченного сингулярного разложения высшего порядка (HOSVD) с введением порога для коэффициентов и последующим обратным преобразованием, сначала для локальных трехмерных окон в пространстве TXY (3D-HOSVD), а затем для пространственно объединенных групп трехмерных окон (4D-HOSVD). Для валидации алгоритма используются синтетические данные кальциевой сигнализации в астроцитах, в которых концентрация кальция транслируется в сигнал флуоресценции, значения которого в каждом кадре и каждом пикселе затем служат математическим ожиданием и дисперсией для сэмплирования случайной величины из непрерывного аналога пуассоновского распределения. Проведен анализ чувствительности алгоритма от параметров понижения ранга вдоль размерности временных компонент и группового ранга, длины локального окна и порога коэффициентов разложения. Несмотря на наличие мультипликативного шума, предлагаемый алгоритм демонстрирует значительное улучшение анализируемого сигнала, увеличивая соотношение «сигнал/шум» (PSNR) более чем на 20 дБ. Данный метод не опирается на предположения относительно разреженности или гладкости сигнала и может быть использован в качестве одного из этапов обработки данных динамической флуоресцентной микроскопии для самых различных типов данных.

    Muravlev V.I., Brazhe A.R.
    Denoising fluorescent imaging data with two-step truncated HOSVD
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 529-542

    Fluorescent imaging data are currently widely used in neuroscience and other fields. Genetically encoded sensors, based on fluorescent proteins, provide a wide inventory enabling scientiests to image virtually any process in a living cell and extracellular environment. However, especially due to the need for fast scanning, miniaturization, etc, the imaging data can be severly corrupred with multiplicative heteroscedactic noise, reflecting stochastic nature of photon emission and photomultiplier detectors. Deep learning architectures demonstrate outstanding performance in image segmentation and denoising, however they can require large clean datasets for training, and the actual data transformation is not evident from the network architecture and weight composition. On the other hand, some classical data transforms can provide for similar performance in combination with more clear insight in why and how it works. Here we propose an algorithm for denoising fluorescent dynamical imaging data, which is based on multilinear higher-order singular value decomposition (HOSVD) with optional truncation in rank along each axis and thresholding of the tensor of decomposition coefficients. In parallel, we propose a convenient paradigm for validation of the algorithm performance, based on simulated flurescent data, resulting from biophysical modeling of calcium dynamics in spatially resolved realistic 3D astrocyte templates. This paradigm is convenient in that it allows to vary noise level and its resemblance of the Gaussian noise and that it provides ground truth fluorescent signal that can be used to validate denoising algorithms. The proposed denoising method employs truncated HOSVD twice: first, narrow 3D patches, spanning the whole recording, are processed (local 3D-HOSVD stage), second, 4D groups of 3D patches are collaboratively processed (non-local, 4D-HOSVD stage). The effect of the first pass is twofold: first, a significant part of noise is removed at this stage, second, noise distribution is transformed to be more Gaussian-like due to linear combination of multiple samples in the singular vectors. The effect of the second stage is to further improve SNR. We perform parameter tuning of the second stage to find optimal parameter combination for denoising.

  2. В работе рассматривается задача параметрической идентификации дискретных линейных стохастических систем, представленных уравнениями в пространстве состояний, с аддитивными и мультипликативными шумами. Предполагается, что уравнения состояния и измерения дискретной линейной стохастической системы зависят от неизвестного параметра, подлежащего идентификации.

    Представлен новый подход к построению градиентных методов параметрической идентификации в классе дискретных линейных стохастических систем с аддитивными и мультиплика- тивными шумами, основанный на применении модифицированной взвешенной ортогонализации Грама – Шмидта (MWGS) и алгоритмов дискретной фильтрации информационного типа.

    Основными теоретическими результатами данной работы являются: 1) новый критерий идентификации в терминах расширенного информационного LD-фильтра; 2) новый алгоритм вычисления значений производных по параметру неопределенности дискретной линейной стохастической системы в расширенном информационном LD-фильтре на основе прямой процедуры модифицированной взвешенной ортогонализации Грама – Шмидта; 3) новый метод вычисления градиента критерия идентификации на основе предложенного дифференцированного расширенного информационного LD-фильтра.

    Преимуществом предложенного подхода является применение численно устойчивой к ошибкам машинного округления MWGS-ортогонализации, лежащей в основе разработанных методов и алгоритмов. Информационный LD-фильтр сохраняет симметричность и положительную определенность информационных матриц. Разработанные алгоритмы имеют блочно-матричную структуру, удобную для компьютерной реализации.

    Все разработанные алгоритмы реализованы на языке MATLAB. Проведены серии численных экспериментов, результаты которых демонстрируют работоспособность предложенного подхода на примере решения задачи идентификации параметров математической модели сложной механической системы.

    Полученные результаты могут быть использованы для построения методов параметрической идентификации математических моделей, представленных в пространстве состояний дискретными линейными стохастическими системами с аддитивными и мультипликативными шумами.

    The paper considers the problem of parameter identification of discrete-time linear stochastic systems in the state space with additive and multiplicative noise. It is assumed that the state and measurements equations of a discrete-time linear stochastic system depend on an unknown parameter to be identified.

    A new approach to the construction of gradient parameter identification methods in the class of discrete-time linear stochastic systems with additive and multiplicative noise is presented, based on the application of modified weighted Gram – Schmidt orthogonalization (MWGS) and the discrete-time information-type filtering algorithms.

    The main theoretical results of this research include: 1) a new identification criterion in terms of an extended information filter; 2) a new algorithm for calculating derivatives with respect to an uncertainty parameter in a discrete-time linear stochastic system based on an extended information LD filter using the direct procedure of modified weighted Gram – Schmidt orthogonalization; and 3) a new method for calculating the gradient of identification criteria using a “differentiated” extended information LD filter.

    The advantages of this approach are that it uses MWGS orthogonalization which is numerically stable against machine roundoff errors, and it forms the basis of all the developed methods and algorithms. The information LD-filter maintains the symmetry and positive definiteness of the information matrices. The algorithms have an array structure that is convenient for computer implementation.

    All the developed algorithms were implemented in MATLAB. A series of numerical experiments were carried out. The results obtained demonstrated the operability of the proposed approach, using the example of solving the problem of parameter identification for a mathematical model of a complex mechanical system.

    The results can be used to develop methods for identifying parameters in mathematical models that are represented in state space by discrete-time linear stochastic systems with additive and multiplicative noise.

  3. Курушина С.Е., Федорова Е.А., Гуровская Ю.А.
    Методика анализа шумоиндуцированных явлений в двухкомпонентных стохастических системах реакционно-диффузионного типа со степенной нелинейностью
    Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 277-291

    В работе построена и исследуется обобщенная модель, описывающая двухкомпонентные системы реакционно-диффузионного типа со степенной нелинейностью и учитывающая влияние внешних шумов. Для анализа обобщенной модели разработана методология, включающая в себя линейный анализ устойчивости, нелинейный анализ устойчивости и численное моделирование эволюции системы. Методика проведения линейного анализа опирается на базовые подходы, в которых для получения характеристического уравнения используется матрица линеаризации. Нелинейный анализ устойчивости проводится с точностью до моментов третьего порядка включительно. Для этого функции, описывающие динамику компонент, раскладываются в ряд Тейлора до слагаемых третьего порядка. Затем с помощью теоремы Новикова проводится процедура усреднения. В результате полученные уравнения образуют бесконечную иерархично подчиненную структуру, которую в определенный момент необходимо прервать. Для этого пренебрегаем вкладом слагаемых выше третьего порядка как в самих уравнениях, так и при построении уравнений моментов. Полученные уравнения образуют набор линейных уравнений, из которых формируется матрица устойчивости. Эта матрица имеет довольно сложную структуру, в связи с чем ее решение может быть получено только численно. Для проведения численного исследования эволюции системы выбран метод переменных направлений. Из-за наличия в анализируемой системе стохастической части метод был модифицирован таким образом, что на целых слоях проводится генерация случайных полей с заданным распределением и функцией корреляции, отвечающих за шумовой вклад в общую нелинейность. Апробация разработанной методологии проведена на предложенной Barrio et al. модели реакции – диффузии, по результатам исследования которой им показана схожесть получаемых структур с пигментацией рыб. В настоящей работе внимание сосредоточено на анализе поведения системы в окрестности ненулевой стационарной точки. Изучена зависимость действительной части собственных значений от волнового числа. В линейном анализе получена область значений волновых чисел, при которых возникает неустойчивость Тьюринга. Нелинейный анализ и численное моделирование эволюции системы проводятся для параметров модели, которые, напротив, находятся вне области неустойчивости Тьюринга. В рамках нелинейного анализа найдены интенсивности аддитивного шума, при которых, несмотря на отсутствие условий для возникновения диффузионной неустойчивости, система переходит в неустойчивое состояние. Результаты численного моделирования эволюции апробируемой модели демонстрируют процесс образования пространственных структур тьюрингового типа при воздействии на нее аддитивного шума.

    Kurushina S.E., Fedorova E.A., Gurovskaia I.A.
    Technique for analyzing noise-induced phenomena in two-component stochastic systems of reaction – diffusion type with power nonlinearity
    Computer Research and Modeling, 2025, v. 17, no. 2, pp. 277-291

    The paper constructs and studies a generalized model describing two-component systems of reaction – diffusion type with power nonlinearity, considering the influence of external noise. A methodology has been developed for analyzing the generalized model, which includes linear stability analysis, nonlinear stability analysis, and numerical simulation of the system’s evolution. The linear analysis technique uses basic approaches, in which the characteristic equation is obtained using a linearization matrix. Nonlinear stability analysis realized up to third-order moments inclusively. For this, the functions describing the dynamics of the components are expanded in Taylor series up to third-order terms. Then, using the Novikov theorem, the averaging procedure is carried out. As a result, the obtained equations form an infinite hierarchically subordinate structure, which must be truncated at some point. To achieve this, contributions from terms higher than the third order are neglected in both the equations themselves and during the construction of the moment equations. The resulting equations form a set of linear equations, from which the stability matrix is constructed. This matrix has a rather complex structure, making it solvable only numerically. For the numerical study of the system’s evolution, the method of variable directions was chosen. Due to the presence of a stochastic component in the analyzed system, the method was modified such that random fields with a specified distribution and correlation function, responsible for the noise contribution to the overall nonlinearity, are generated across entire layers. The developed methodology was tested on the reaction – diffusion model proposed by Barrio et al., according to the results of the study, they showed the similarity of the obtained structures with the pigmentation of fish. This paper focuses on the system behavior analysis in the neighborhood of a non-zero stationary point. The dependence of the real part of the eigenvalues on the wavenumber has been examined. In the linear analysis, a range of wavenumber values is identified in which Turing instability occurs. Nonlinear analysis and numerical simulation of the system’s evolution are conducted for model parameters that, in contrast, lie outside the Turing instability region. Nonlinear analysis found noise intensities of additive noise for which, despite the absence of conditions for the emergence of diffusion instability, the system transitions to an unstable state. The results of the numerical simulation of the evolution of the tested model demonstrate the process of forming spatial structures of Turing type under the influence of additive noise.

  4. Скачков Д.А., Гладышев С.И., Райгородский А.М.
    Экспериментальное сравнение алгоритмов поиска вектора PageRank
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 369-379

    Задача поиска PageRank вектора представляет большой научный и практический интерес ввиду своей применимости к работе современных поисковых систем. Несмотря на то, что данная задача сводится к поиску собственного вектора стохастической матрицы $P$, потребность в новых алгоритмах для ее решения обусловлена большими размерами входных данных. Для достижения не более чем линейного времени работы применяются различные рандомизированные методы, возвращающие ожидаемый ответ лишь с некоторой достаточно близкой к единице вероятностью. Нами рассматриваются два таких способа, сводящие задачу поиска вектора PageRank к задаче поиска равновесия в антагонистической матричной игре, которая затем решается с помощью алгоритма Григориадиса – Хачияна. При этом данная реализация эффективно работает в предположении о разреженности матрицы, подаваемой на вход. Насколько нам известно, до сих пор не было ни одной успешной реализации ни алгоритма Григориадиса – Хачияна, ни его применения к задаче поиска вектора PageRank. Данная статья ставит перед собой задачу восполнить этот пробел. В работе приводится описание двух версий алгоритма с псевдокодом и некоторые детали их реализации. Кроме того, в работе рассматривается другой вероятностный метод поиска вектора PageRank, а именно Markov chain Monte Carlo (MCMC), с целью сравнения результатов работы указанных алгоритмов на матрицах с различными значениями спектральной щели. Последнее представляет особый интерес, поскольку значение спектральной щели сильно влияет на скорость сходимости MCMC, и не оказывает никакого влияния на два других подхода. Сравнение проводилось на сгенерированных графах двух видов: цепочках и $d$-мерных кубах. Проведенные эксперименты, как и предсказывает теория, демонстрируют эффективность алгоритма Григориадиса – Хачияна по сравнению с MCMC для разреженных графов с маленьким значением спектральной щели. Весь код находится в открытом доступе, так чтобы все желающие могли воспроизвести полученные результаты самостоятельно, или же использовать данную реализацию в своих нуждах. Работа имеет чисто практическую направленность, никаких теоретических результатов авторами получено не было.

    Skachkov D.A., Gladyshev S.I., Raigorodsky A.M.
    Experimental comparison of PageRank vector calculation algorithms
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 369-379

    Finding PageRank vector is of great scientific and practical interest due to its applicability to modern search engines. Despite the fact that this problem is reduced to finding the eigenvector of the stochastic matrix $P$, the need for new algorithms is justified by a large size of the input data. To achieve no more than linear execution time, various randomized methods have been proposed, returning the expected result only with some probability close enough to one. We will consider two of them by reducing the problem of calculating the PageRank vector to the problem of finding equilibrium in an antagonistic matrix game, which is then solved using the Grigoriadis – Khachiyan algorithm. This implementation works effectively under the assumption of sparsity of the input matrix. As far as we know, there are no successful implementations of neither the Grigoriadis – Khachiyan algorithm nor its application to the task of calculating the PageRank vector. The purpose of this paper is to fill this gap. The article describes an algorithm giving pseudocode and some details of the implementation. In addition, it discusses another randomized method of calculating the PageRank vector, namely, Markov chain Monte Carlo (MCMC), in order to compare the results of these algorithms on matrices with different values of the spectral gap. The latter is of particular interest, since the magnitude of the spectral gap strongly affects the convergence rate of MCMC and does not affect the other two approaches at all. The comparison was carried out on two types of generated graphs: chains and $d$-dimensional cubes. The experiments, as predicted by the theory, demonstrated the effectiveness of the Grigoriadis – Khachiyan algorithm in comparison with MCMC for sparse graphs with a small spectral gap value. The written code is publicly available, so everyone can reproduce the results themselves or use this implementation for their own needs. The work has a purely practical orientation, no theoretical results were obtained.

  5. Митин Н.А., Орлов Ю.Н.
    Статистический анализ биграмм специализированных текстов
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 243-254

    Метод спектрального анализа стохастической матрицы применяется для построения индикатора, позволяющего определять тематику научных текстов без использования ключевых слов. Эта матрица представляет собой матрицу условных вероятностей биграмм, построенную по статистике используемых в тексте символов алфавита без учета пробелов, цифр и знаков препинания. Научные тексты классифицируются по взаимному расположению инвариантных подпространств матрицы условных вероятностей пар буквосочетаний. Индикатор разделения — величина косинуса угла между правым и левым собственными векторами, отвечающими максимальному и минимальному собственным значениям. Вычислительный алгоритм использует специальное представление параметра дихотомии, в качестве которого выступает интеграл от нормы квадрата резольвенты стохастической матрицы биграмм по окружности заданного радиуса в комплексной плоскости. Стремление интеграла в бесконечность свидетельствует о приближении контура интегрирования к собственному значению матрицы. В работе приведены типовые распределения индикатора идентификации специальностей. Для статистического анализа были проанализированы диссертации по основным 19 специальностям ВАК без учета классификации внутри специальности, по 20 текстов на специальность. Выяснилось, что эмпирические распределения косинуса угла для физико-математических и гуманитарных специальностей не имеют общего носителя, поэтому могут быть формально разделены по значению этого индикатора без ошибки. Хотя корпус текстов был не особенно большой, тем не менее при произвольном отборе диссертаций ошибка идентификации на уровне 2 % представляется очень хорошим результатом по сравнению с методами, основанными на семантическом анализе. Также выяснилось, что можно составить паттерн текста по каждой из специальностей в виде эталонной матрицы биграмм, по близости к которой в норме суммируемых функций можно безошибочно идентифицировать тематику написанного научного произведения, не используя ключевые слова. Предложенный метод можно использовать и в качестве сравнительного индикатора большей или меньшей строгости научного текста или как индикатор соответствия текста определенному научному уровню.

    Mitin N.A., Orlov Y.N.
    Statistical analysis of bigrams of specialized texts
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 243-254

    The method of the stochastic matrix spectrum analysis is used to build an indicator that allows to determine the subject of scientific texts without keywords usage. This matrix is a matrix of conditional probabilities of bigrams, built on the statistics of the alphabet characters in the text without spaces, numbers and punctuation marks. Scientific texts are classified according to the mutual arrangement of invariant subspaces of the matrix of conditional probabilities of pairs of letter combinations. The separation indicator is the value of the cosine of the angle between the right and left eigenvectors corresponding to the maximum and minimum eigenvalues. The computational algorithm uses a special representation of the dichotomy parameter, which is the integral of the square norm of the resolvent of the stochastic matrix of bigrams along the circumference of a given radius in the complex plane. The tendency of the integral to infinity testifies to the approximation of the integration circuit to the eigenvalue of the matrix. The paper presents the typical distribution of the indicator of identification of specialties. For statistical analysis were analyzed dissertations on the main 19 specialties without taking into account the classification within the specialty, 20 texts for the specialty. It was found that the empirical distributions of the cosine of the angle for the mathematical and Humanities specialties do not have a common domain, so they can be formally divided by the value of this indicator without errors. Although the body of texts was not particularly large, nevertheless, in the case of arbitrary selection of dissertations, the identification error at the level of 2 % seems to be a very good result compared to the methods based on semantic analysis. It was also found that it is possible to make a text pattern for each of the specialties in the form of a reference matrix of bigrams, in the vicinity of which in the norm of summable functions it is possible to accurately identify the theme of the written scientific work, without using keywords. The proposed method can be used as a comparative indicator of greater or lesser severity of the scientific text or as an indicator of compliance of the text to a certain scientific level.

Pages: previous

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"