Результаты поиска по 'стохастические дифференциальные уравнения':
Найдено статей: 23
  1. Башкирцева И.А., Перевалова Т.В., Ряшко Л.Б.
    Метод стохастической чувствительности в анализе динамических трансформаций в модели «две жертвы – хищник»
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1343-1356

    Данная работа посвящена исследованию проблемы моделирования и анализа сложных колебательных режимов, как регулярных, так и хаотических, в системах взаимодействующих популяций в присутствии случайных возмущений. В качестве исходной концептуальной детерминированной модели рассматривается вольтерровская система трех дифференциальных уравнений, описывающая динамику популяций жертв двух конкурирующих видов и хищника. Данная модель учитывает следующие ключевые биологические факторы: естественный прирост жертв, их внутривидовую и межвидовую конкуренцию, вымирание хищников в отсутствие жертв, скорость выедания жертв хищником, прирост популяции хищника вследствие выедания жертв, интенсивность внутривидовой конкуренции в популяции хищника. В качестве бифуркационного параметра используется скорость роста второй популяции жертв. На некотором интервале изменения этого параметра система демонстрирует большое разнообразие динамических режимов: равновесных, колебательных и хаотических. Важной особенностью этой модели является мультистабильность. В данной работе мы фокусируемся на изучении параметрической зоны тристабильности, когда в системе сосуществуют устойчивое равновесие и два предельных цикла. Такая биритмичность в присутствии случайных возмущений порождает новые динамические режимы, не имеющие аналогов в детерминированном случае. Целью статьи является детальное изучение стохастических явлений, вызванных случайными флуктуациями скорости роста второй популяции жертв. В качестве математической модели таких флуктуаций мы рассматриваем белый гауссовский шум. Методами прямого численного моделирования решений соответствующей системы стохастических дифференциальных уравнений выявлены и описаны следующие феномены: однонаправленные стохастические переходы с одного цикла на другой; триггерный режим, вызванный переходами между циклами; индуцированный шумом переход с циклов на равновесие, отвечающее вымиранию популяции хищника и второй жертвы. В статье представлены результаты анализа этих явлений с помощью показателей Ляпунова, выявлены параметрические условия переходов от порядка к хаосу и от хаоса к порядку. Для аналитического исследования таких вызванных шумом многоэтапных переходов были применены техника функций стохастической чувствительности и метод доверительных областей. В статье показано, как этот математический аппарат позволяет спрогнозировать интенсивность шума, приводящего к качественным трансформациям режимов стохастической популяционной динамики.

    Bashkirtseva I.A., Perevalova T.V., Ryashko L.B.
    Stochastic sensitivity analysis of dynamic transformations in the “two prey – predator” model
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1343-1356

    This work is devoted to the study of the problem of modeling and analyzing complex oscillatory modes, both regular and chaotic, in systems of interacting populations in the presence of random perturbations. As an initial conceptual deterministic model, a Volterra system of three differential equations is considered, which describes the dynamics of prey populations of two competing species and a predator. This model takes into account the following key biological factors: the natural increase in prey, their intraspecific and interspecific competition, the extinction of predators in the absence of prey, the rate of predation by predators, the growth of the predator population due to predation, and the intensity of intraspecific competition in the predator population. The growth rate of the second prey population is used as a bifurcation parameter. At a certain interval of variation of this parameter, the system demonstrates a wide variety of dynamic modes: equilibrium, oscillatory, and chaotic. An important feature of this model is multistability. In this paper, we focus on the study of the parametric zone of tristability, when a stable equilibrium and two limit cycles coexist in the system. Such birhythmicity in the presence of random perturbations generates new dynamic modes that have no analogues in the deterministic case. The aim of the paper is a detailed study of stochastic phenomena caused by random fluctuations in the growth rate of the second population of prey. As a mathematical model of such fluctuations, we consider white Gaussian noise. Using methods of direct numerical modeling of solutions of the corresponding system of stochastic differential equations, the following phenomena have been identified and described: unidirectional stochastic transitions from one cycle to another, trigger mode caused by transitions between cycles, noise-induced transitions from cycles to the equilibrium, corresponding to the extinction of the predator and the second prey population. The paper presents the results of the analysis of these phenomena using the Lyapunov exponents, and identifies the parametric conditions for transitions from order to chaos and from chaos to order. For the analytical study of such noise-induced multi-stage transitions, the technique of stochastic sensitivity functions and the method of confidence regions were applied. The paper shows how this mathematical apparatus allows predicting the intensity of noise, leading to qualitative transformations of the modes of stochastic population dynamics.

  2. В работе исследуется дискретная модификация модели А.П. Михайлова «власть – общество», ранее предложенная автором. Эта модификация основана на стохастическом клеточном автомате, то есть имеет микродинамику, принципиально отличную от базовой непрерывной, основанной на дифференциальных уравнениях модели. При этом макродинамика дискретной модификации, как показано в предыдущих работах, совпадает с макродинамикой исходной модели. Этот важный результат, однако, вызывает вопрос, в чем смысл использования дискретной модели. Ее главной особенностью является гибкость, позволяющая добавлять в рассмотрение самые разные факторы, учет которых в непрерывной модели либо приводит к существенному росту вычислительной сложности, либо в принципе невозможен.

    В данной работе рассматриваются несколько примеров подобного расширения области применимости модели, при помощи которого решается ряд прикладных задач.

    Одна из модификаций модели учитывает экономические связи между регионами и муниципалитетами, что не могло быть исследовано в базовой модели. Вычислительные эксперименты подтвердили улучшение социально-экономических показателей системы при наличии таких связей.

    Вторая модификация включает в себя возможность внутренней миграции в системе. С ее помощью был получен ряд результатов, связанных с социально-экономическим развитием более благополучного региона, притягивающего мигрантов.

    Кроме этого, была исследована динамика системы при изменении количества регионов и муниципалитетов в системе. Показано негативное влияние этого процесса на социально-экономические показатели системы и найдено возможное управление, имеющее целью преодоление этого негативного влияния.

    Результатами данного исследования, таким образом, явились как решение отдельных прикладных задач, так и демонстрация на их примере более широких возможностей дискретной модели по сравнению с базовой непрерывной.

    Stepantsov M.Y.
    Modeling some scenarios in the “power – society” system concerning migration and changing the number of regions
    Computer Research and Modeling, 2024, v. 16, no. 6, pp. 1499-1512

    The paper considers an earlier proposed by the author discrete modification of the A. P. Mikhailov “power – society” model. The modification is based on a stochastic cellular automaton, it’s microdynamics being completely different from the c continuous model based on differential equations. However, the macrodynamics of the discrete modification is shown in previous works to be equivalent to one of the continuous model. This is important, but at the same time raises the question why use the discrete model. The answer lies in its flexibility, which allows adding a variety of factors, the consideration of which in a continuous model either leads to a significant increase in computational complexity or is simply impossible.

    This paper considers several examples of such applicability expansion of the model, with the help of which a number of applied problems are solved.

    One of the modifications of the model takes into account economic ties between regions and municipalities, which could not be studied in the basic model. Computational experiments confirmed the improvement of the socio-economic indicators of the system under the influence of the ties.

    The second modification allows internal migration in the system. Using it we studied the socio-economic development of a more prosperous region that attracts migrants.

    Next we studied the dynamics of the system while the number of regions and municipalities changes. The negative impact of this process on the socio-economic indicators of the system was shown and possible control was found to overcome this negative impact.

    The results of this study, therefore, include both the solution of some applied problems and the demonstration of the broader applicability of the discrete model compared with the continuous one.

  3. Лукьянцев Д.С., Афанасьев Н.Т., Танаев А.Б., Чудаев С.О.
    Численно-аналитическое моделирование гравитационного линзирования электромагнитных волн в случайно-неоднородной космической плазме
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 433-443

    Для интерпретации данных измерений астрофизических прецизионных инструментов нового поколения разработан аппарат численно-аналитического моделирования характеристик распространения электромагнитных волн в хаотической космической плазме с учетом эффектов гравитации. Задача распространения волн в искривленном (римановом) пространстве решена в евклидовом пространстве путем введения эффективного показателя преломления вакуума, выраженного через потенциал тяготения. Задавая различные модели плотности распределения массы астрофизических объектов и решая уравнение Пуассона, можно рассчитать гравитационный потенциал и вычислить эффективный показатель преломления вакуума. В предположении аддитивности вкладов различных объектов в общее гравитационное поле предложена приближенная модель эффективного показателя преломления. Считая пространственные масштабы показателя преломления много больше длины волны, расчет характеристик электромагнитных волн в поле тяготения астрофизических объектов проводится в приближении геометрической оптики. В основу численно-аналитического аппарата моделирования траекторных характеристик волн положены лучевые дифференциальные уравнения в форме Эйлера. Хаотические неоднородности космической плазмы заданы моделью пространственной корреляционной функции показателя преломления. Расчеты рефракционного рассеяния волн выполнены в приближении метода возмущений. Получены интегральные выражения для статистических моментов боковых отклонений лучей в картинной плоскости наблюдателя. С помощью аналитических преобразований интегралы для моментов сведены к системе обыкновенных дифференциальных уравнений первого порядка для совместного численного расчета средних и среднеквадратичных отклонений лучей. Приведены результаты численно-аналитического моделирования траекторной картины распространения электромагнитных волн в межзвездной среде с учетом воздействий полей тяготения космических объектов и рефракционного рассеяния волн на неоднородностях показателя преломления окружающей плазмы. На основе результатов моделирования сделана количественная оценка условий стохастического замывания эффектов гравитационного линзирования электромагнитных волн в различных частотных диапазонах. Показано, что рабочие частоты метрового диапазона длин волн представляют собой условную низкочастотную границу для наблюдений эффекта гравитационного линзирования в стохастической космической плазме. Предложенный аппарат численно-аналитического моделирования можно использовать для анализа структуры электромагнитного излучения квазаров, прошедшего группу галактик.

    Lukyantsev D.S., Afanasiev N.T., Tanaev A.B., Chudaev S.O.
    Numerical-analytical modeling of gravitational lensing of the electromagnetic waves in random-inhomogeneous space plasma
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 433-443

    Instrument of numerical-analytical modeling of characteristics of propagation of electromagnetic waves in chaotic space plasma with taking into account effects of gravitation is developed for interpretation of data of measurements of astrophysical precision instruments of new education. The task of propagation of waves in curved (Riemann’s) space is solved in Euclid’s space by introducing of the effective index of refraction of vacuum. The gravitational potential can be calculated for various model of distribution of mass of astrophysical objects and at solution of Poisson’s equation. As a result the effective index of refraction of vacuum can be evaluated. Approximate model of the effective index of refraction is suggested with condition that various objects additively contribute in total gravitational field. Calculation of the characteristics of electromagnetic waves in the gravitational field of astrophysical objects is performed by the approximation of geometrical optics with condition that spatial scales of index of refraction a lot more wavelength. Light differential equations in Euler’s form are formed the basis of numerical-analytical instrument of modeling of trajectory characteristic of waves. Chaotic inhomogeneities of space plasma are introduced by model of spatial correlation function of index of refraction. Calculations of refraction scattering of waves are performed by the approximation of geometrical optics. Integral equations for statistic moments of lateral deviations of beams in picture plane of observer are obtained. Integrals for moments are reduced to system of ordinary differential equations the firsts order with using analytical transformations for cooperative numerical calculation of arrange and meansquare deviations of light. Results of numerical-analytical modeling of trajectory picture of propagation of electromagnetic waves in interstellar space with taking into account impact of gravitational fields of space objects and refractive scattering of waves on inhomogeneities of index of refraction of surrounding plasma are shown. Based on the results of modeling quantitative estimation of conditions of stochastic blurring of the effect of gravitational lensing of electromagnetic waves at various frequency ranges is performed. It’s shown that operating frequencies of meter range of wavelengths represent conditional low-frequency limit for observational of the effect of gravitational lensing in stochastic space plasma. The offered instrument of numerical-analytical modeling can be used for analyze of structure of electromagnetic radiation of quasar propagating through group of galactic.

Pages: « first previous

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"