Результаты поиска по 'теория бифуркаций':
Найдено статей: 15
  1. Соболев Е.В., Тихонов Д.А.
    Численное исследование сингулярности интегральных уравнений теории жидкостей в приближении RISM
    Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 51-62

    Предложена схема построения параметрического портрета интегральных уравнений теории жидкостей в приближении RISM. Для нахождения всех связных решений использован метод продолжения по параметру. Получены уравнения для молекулярных жидкостей, сводимых по соображениям симметрии к модели двуцентровых молекул. Для преодоления особых точек использован переход к зависимости уравнений RISM от обратной сжимаемости. С помощью предложенного метода проведены численные расчеты изотерм обратной сжимаемости метана для трех уравнений замыкания. В случае частично линеаризованного гиперцепного замыкания не обнаружено бифуркации решений. Для других замыканий получены бифуркации решений и обнаружено поведение, которое не характерно для модели простых жидкостей. В случае замыкания Перкуса-Йевика в области низких температур получены нефизические решения. Для гиперцепного замыкания в области температур выше критической точки получена дополнительная ветвь решений с изломом в точке бифуркации.

    Sobolev E.V., Tikhonov D.A.
    Numerical analyses of singularity in the integral equation of theory of liquids in the RISM approximation
    Computer Research and Modeling, 2010, v. 2, no. 1, pp. 51-62

    An approach to evaluation of a parametric portrait of integral equations of the theory of liquids in the RISM approximation was proposed. To obtain all associated solutions the continuation method was used. The equations reduced to a two-centered molecule model for symmetry reasons were deduced for molecular liquids. For molecular liquids, some equations were obtained which could be reduced, for symmetry reasons, to a two-center molecular model. To avoid critical points we changed the dependence of RISM-equations on reverse compressibility. The suggested method was used to perform numerical computations of methane reverse compressibility isotherms with three closures. No bifurcation of solutions was observed in the case of the partially linearized hypernetted chain closure. For other closures bifurcations of solutions were obtained and the model behavior nontypical for simple liquids was observed. In the case of Percus-Yevick closure nonphysical solutions were obtained at low temperature and density. Additional solution branch with a kink in the bifurcation point was obtained in the case of hypernetted chain closure at temperature above the critical point.

    Views (last year): 4.
  2. В работе рассмотрено приложение методов кинетической теории к задачам гемодинамики. Для моделирования выбраны решеточные уравнения Больцмана. Данные модели описывают дискретизированную по пространственной и временной координате динамику движения частиц на одномерной решетке. Хорошо известно, что в пределе малых длин свободного пробега решеточные уравнения Больцмана описывают уравнения гидродинамики. Если течение достаточно медленное (мало число Маха), то данные уравнения гидродинамики переходят в уравнения Навье – Стокса для сжимаемого газа. Если в получающихся гидродинамических уравнениях переменные, отвечающие плотности и скорости звука, считать площадью поперечного сечения сосуда и скоростью распространения пульсовой волны давления, то выводятся хорошо известные в биомеханике нелинейные уравнения распространения несжимаемой вязкой жидкости (крови) в эластичном сосуде для частного случая постоянной пульсовой скорости.

    В общем случае скорость распространения пульсовой волны зависит от площади просвета сосуда. Следует отметить интересную аналогию: уравнение состояния решеточного газа в новых переменных становится законом, связывающим давление и площадь поперечного сечения сосуда. Таким образом, в общем случае требуется модифицировать уравнение состояния для решеточного уравнения Больцмана. Данная процедура хорошо известна в теории неидеального газа и многофазных течений и эквивалентна введению в уравнения виртуальной силы. Получающиеся уравнения могут использоваться для моделирования любых законов, связывающих скорость пульсовой волны и площадь просвета сосуда.

    В качестве тестовых задач рассмотрено распространение уединенной нелинейной пульсовой волны в сосуде с упругими свойствами, описываемыми законом Лапласа. Во второй задаче рассмотрено распространение пульсовых волн для бифуркации сосудов. Показано, что результаты расчетов хорошо совпадают с данными из предыдущих исследований.

    Ilyin O.V.
    The modeling of nonlinear pulse waves in elastic vessels using the Lattice Boltzmann method
    Computer Research and Modeling, 2019, v. 11, no. 4, pp. 707-722

    In the present paper the application of the kinetic methods to the blood flow problems in elastic vessels is studied. The Lattice Boltzmann (LB) kinetic equation is applied. This model describes the discretized in space and time dynamics of particles traveling in a one-dimensional Cartesian lattice. At the limit of the small times between collisions LB models describe hydrodynamic equations which are equivalent to the Navier – Stokes for compressible if the considered flow is slow (small Mach number). If one formally changes in the resulting hydrodynamic equations the variables corresponding to density and sound wave velocity by luminal area and pulse wave velocity then a well-known 1D equations for the blood flow motion in elastic vessels are obtained for a particular case of constant pulse wave speed.

    In reality the pulse wave velocity is a function of luminal area. Here an interesting analogy is observed: the equation of state (which defines sound wave velocity) becomes pressure-area relation. Thus, a generalization of the equation of state is needed. This procedure popular in the modeling of non-ideal gas and is performed using an introduction of a virtual force. This allows to model arbitrary pressure-area dependence in the resulting hemodynamic equations.

    Two test case problems are considered. In the first problem a propagation of a sole nonlinear pulse wave is studied in the case of the Laplace pressure-area response. In the second problem the pulse wave dynamics is considered for a vessel bifurcation. The results show good precision in comparison with the data from literature.

    Views (last year): 2.
  3. Жданова О.Л., Колбина Е.А., Фрисман Е.Я.
    Эволюционные эффекты неселективного равновесного промысла в генетически неоднородной популяции
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 717-735

    Оптимизация промысла остается важной задачей математической биологии. Концепция максимального равновесного изъятия MSY, популярная в теории оптимальной эксплуатации, предполагает поддержание численности популяции на уровне максимального воспроизводства, что в теории позволяет балансировать между экономической выгодой и сохранением биоресурсов. Однако этот подход имеет ограничения, обусловленные сложной структурой популяций и нелинейностью динамических процессов. Особую проблему представляют эволюционные последствия: селективный промысел изменяет условия отбора, что ведет к трансформации поведенческих характеристик, ухудшению качества потомства и изменению генофонда. Влияние неселективного промысла на генетический состав изучено меньше.

    В работе исследуется влияние неселективного промысла с постоянной долей изъятия на эволюцию генетически неоднородной популяции. Предполагается, что генетическое разнообразие контролируется одним локусом с двумя аллелями. При высокой и низкой численности преимущество получают разные генотипы: одни более плодовиты (r-стратегия), другие более устойчивы к ограничению по ресурсам (K-стратегия). Рассматривается классическая эколого-генетическая модель с дискретным временем в предположении, что приспособленность каждого из генотипов линейно зависит от популяционной численности. Включение в модель коэффициента промыслового изъятия позволяет связать задачу оптимизации промысла с задачей прогноза отбора генотипов.

    Аналитически показано, что при промысле, обеспечивающем максимальный устойчивый улов (MSY), равновесный генетический состав не меняется, а численность снижается вдвое, при этом тип генетического равновесия может измениться. Это связано с тем, что оптимальная доля изъятия для одного генетического равновесия не является оптимальной для других. В отсутствие промысла доминируют K-стратеги, но изъятие особей может сместить баланс в пользу r-стратегов, чья высокая плодовитость компенсирует потери. Определены критические уровни изъятия, при которых происходит смена доминирующей стратегии.

    Результаты объясняют, почему промысловые популяции медленно восстанавливаются после прекращения эксплуатации: промысел закрепляет адаптации, выгодные при изъятии, но снижающие устойчивость в естественных условиях. Например, у песцов в неволе закрепляются высокопродуктивные генотипы, тогда как в природе преобладают особи с меньшей плодовитостью, но большей выживаемостью. Это указывает на необходимость учета генетической динамики при разработке стратегий устойчивого промысла.

    Zhdanova O.L., Kolbina E.A., Frisman E.Y.
    Evolutionary effects of non-selective sustainable harvesting in a genetically heterogeneous population
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 717-735

    The problem of harvest optimization remains a central challenge in mathematical biology. The concept of Maximum Sustainable Yield (MSY), widely used in optimal exploitation theory, proposes maintaining target populations at levels ensuring maximum reproduction, theoretically balancing economic benefits with resource conservation. While MSYbased management promotes population stability and system resilience, it faces significant limitations due to complex intrapopulation structures and nonlinear dynamics in exploited species. Of particular concern are the evolutionary consequences of harvesting, as artificial selection may drive changes divergent from natural selection pressures. Empirical evidence confirms that selective harvesting alters behavioral traits, reduces offspring quality, and modifies population gene pools. In contrast, the genetic impacts of non-selective harvesting remain poorly understood and require further investigation.

    This study examines how non-selective harvesting with constant removal rates affects evolution in genetically heterogeneous populations. We model genetic diversity controlled by a single diallelic locus, where different genotypes dominate at high/low densities: r-strategists (high fecundity) versus K-strategists (resource-limited resilience). The classical ecological and genetic model with discrete time is considered. The model assumes that the fitness of each genotype linearly depends on the population size. By including the harvesting withdrawal coefficient, the model allows for linking the problem of optimizing harvest with the that of predicting genotype selection.

    Analytical results demonstrate that under MSY harvesting the equilibrium genetic composition remains unchanged while population size halves. The type of genetic equilibrium may shift, as optimal harvest rates differ between equilibria. Natural K-strategist dominance may reverse toward r-strategists, whose high reproduction compensates for harvest losses. Critical harvesting thresholds triggering strategy shifts were identified.

    These findings explain why exploited populations show slow recovery after harvesting cessation: exploitation reinforces adaptations beneficial under removal pressure but maladaptive in natural conditions. For instance, captive arctic foxes select for high-productivity genotypes, whereas wild populations favor lower-fecundity/higher-survival phenotypes. This underscores the necessity of incorporating genetic dynamics into sustainable harvesting management strategies, as MSY policies may inadvertently alter evolutionary trajectories through density-dependent selection processes. Recovery periods must account for genetic adaptation timescales in management frameworks.

  4. Ильин О.В.
    Граничные условия для решеточных уравнений Больцмана в приложениях к задачам гемодинамики
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 865-882

    Рассматривается одномерная трехскоростная кинетическая решеточная модель уравнения Больцмана, которая в рамках кинетической теории описывает распространение и взаимодействие частиц трех типов. Данная модель представляет собой разностную схему второго порядка для уравнений гидродинамики. Ранее было показано, что одномерная кинетическая решеточная модель уравнения Больцмана с внешней силой в пределе малых длин свободного пробега также эквивалентна одномерным уравнениям гемодинамики для эластичных сосудов, эквивалентность можно установить, используя разложение Чепмена – Энскога. Внешняя сила в модели отвечает за возможность регулировки функциональной зависимости между площадью просвета сосуда и приложенного к стенке рассматриваемого сосуда давления. Таким образом, меняя форму внешней силы, можно моделировать практически произвольные эластичные свойства стенок сосудов. В настоящей работе рассмотрены постановки физиологически интересных граничных условий для решеточных уравнений Больцмана в приложениях к задачам течения крови в сети эластичных сосудов. Разобраны следующие граничные условия: для давления и потока крови на входе сосудистой сети, условия для давления и потоков крови в точке бифуркации сосудов, условия отражения (соответствуют полной окклюзии сосуда) и поглощения волн на концах сосудов (эти условия соответствуют прохождению волны без искажений), а также условия типа RCR, представляющие собой схему, аналогичную электрическим цепям и состоящую из двух резисторов (соответствующих импедансу сосуда, на конце которого ставятся граничные условия, а также силам трения крови в микроциркуляторном русле) и одного конденсатора (описывающего эластичные свойства артериол). Проведено численное моделирование, рассмотрена задача о распространении крови в сети из трех сосудов, на входе сети ставятся условияна входящий поток крови, на концах сети ставятсяу словия типа RCR. Решения сравниваются с эталонными, в качестве которых выступают результаты численного счета на основе разностной схемы Маккормака второго порядка (без вязких членов), показано, что оба подхода дают практически идентичные результаты.

    Ilyin O.V.
    Boundary conditions for lattice Boltzmann equations in applications to hemodynamics
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 865-882

    We consider a one-dimensional three velocity kinetic lattice Boltzmann model, which represents a secondorder difference scheme for hydrodynamic equations. In the framework of kinetic theory this system describes the propagation and interaction of three types of particles. It has been shown previously that the lattice Boltzmann model with external virtual force is equivalent at the hydrodynamic limit to the one-dimensional hemodynamic equations for elastic vessels, this equivalence can be achieved with use of the Chapman – Enskog expansion. The external force in the model is responsible for the ability to adjust the functional dependence between the lumen area of the vessel and the pressure applied to the wall of the vessel under consideration. Thus, the form of the external force allows to model various elastic properties of the vessels. In the present paper the physiological boundary conditions are considered at the inlets and outlets of the arterial network in terms of the lattice Boltzmann variables. We consider the following boundary conditions: for pressure and blood flow at the inlet of the vascular network, boundary conditions for pressure and blood flow for the vessel bifurcations, wave reflection conditions (correspond to complete occlusion of the vessel) and wave absorption at the ends of the vessels (these conditions correspond to the passage of the wave without distortion), as well as RCR-type conditions, which are similar to electrical circuits and consist of two resistors (corresponding to the impedance of the vessel, at the end of which the boundary conditions are set and the friction forces in microcirculatory bed) and one capacitor (describing the elastic properties of arterioles). The numerical simulations were performed: the propagation of blood in a network of three vessels was considered, the boundary conditions for the blood flow were set at the entrance of the network, RCR boundary conditions were stated at the ends of the network. The solutions to lattice Boltzmann model are compared with the benchmark solutions (based on numerical calculations for second-order McCormack difference scheme without viscous terms), it is shown that the both approaches give very similar results.

  5. Брацун Д.А., Костарев К.В.
    Математическое моделирование фазовых переходов при коллективном взаимодействии агентов
    Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 1005-1028

    Коллективное поведение может выступать в роли механизма терморегуляции и играть ключевую роль при выживании группы организмов. Такие явления в среде животных, как правило, являются предметом изучения биологии, так как внезапные переходы к коллективному поведению трудно дифференцировать от психологической и социальной адаптации животных в группе. Тем не менее в работе указывается важный пример, когда стая животных демонстрирует фазовые переходы, сходные с явлением классической тепловой конвекции в жидкостях и газах. Этот вопрос может быть изучен также экспериментально в рамках синтетических систем, состоящих из самодвижущихся роботов, которые действуют по определенному заданному алгоритму. Обобщая оба эти случая, мы рассматриваем задачу о фазовых переходах в плотной группе взаимодействующих самодвижущихся агентов. Врамк ах микроскопической теории мы предлагаем математическую модель явления, в которой агенты представлены в виде тел, взаимодействующих друг с другом в соответствии с эффективным потенциалом особого вида, выражающим стремление агентов двигаться в направлении градиента общего теплового поля. Показано, что управляющим параметром задачи является численность группы. Дискретная модель с индивидуальной динамикой агентов воспроизводит большинство явлений, наблюдаемых как в естественных стаях животных, демонстрирующих коллективную терморегуляцию, так и в синтетических сложных системах, состоящих из роботов. Наблюдается фазовый переход 1-го рода со сменой агрегатного состояния в среде агентов, который заключается в самосборке первоначальной слабоструктурированной массы агентов в плотные квазикристаллические структуры. Кроме того, показано, что с увеличением численности скопления наблюдается фазовый переход 2-го рода в форме тепловой конвекции, который включает внезапное ожижение группы и переход к вихревому движению. Последнее обеспечивает более эффективное расходование энергии в случае синтетической системы взаимодействующих роботов и коллективное выживание всех особей в случае природных стай животных. С ростом численности группы происходят вторичные бифуркации, вихревая структура толпы агентов усложняется.

    Bratsun D.A., Kostarev K.V.
    Mathematical modeling of phase transitions during collective interaction of agents in a common thermal field
    Computer Research and Modeling, 2025, v. 17, no. 5, pp. 1005-1028

    Collective behavior can serve as a mechanism of thermoregulation and play a key role in the joint survival of a group of organisms. In higher animals, such phenomena are usually the subject of study of biology since sudden transitions to collective behavior are difficult to differentiate from the psychological and social adaptation of animals. However, in this paper, we indicate several important examples when a flock of higher animals demonstrates phase transitions similar to known phenomena in liquids and gases. This issue can also be studied experimentally within the framework of synthetic systems consisting of self-propelled robots that act according to a certain given algorithm. Generalizing both of these cases, we consider the problem of phase transitions in a dense group of interacting selfpropelled agents. Within the framework of microscopic theory, we propose a mathematical model of the phenomenon, in which agents are represented as bodies interacting with each other in accordance with an effective potential of a special type, expressing the desire of agents to move in the direction of the gradient of the joint thermal field. We show that the number of agents in the group, the group power, is the control parameter of the problem. A discrete model with individual dynamics of agents reproduces most of the phenomena observed both in natural flocks of higher animals engaged in collective thermoregulation and in synthetic complex systems. A first-order phase transition is observed, which symbolizes a change in the aggregate state in a group of agents. One observes the self-assembly of the initial weakly structured mass of agents into dense quasi-crystalline structures. We demonstrate also that, with an increase in the group power, a second-order phase transition in the form of thermal convection can occur. It manifests in a sudden liquefaction of the group and a transition to vortex motion, which ensures more efficient energy consumption in the case of a synthetic system of interacting robots and the collective survival of all individuals in the case of natural animal flocks.With an increase in the group power, secondary bifurcations occur, the vortex structure in agent medium becomes more complicated.

Pages: previous

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"