All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
- Views (last year): 29.
-
Ситуационное распределение ресурсов: обзор технологий решения задач на основе систем знаний
Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 543-566В обзоре представлены обновленные технологии решения двух классов линейных задач распределения ресурсов при динамично изменяющихся характеристиках систем ситуационного управления и информированности экспертов (и/или обучаемых роботов), решающих задачи. Поиск решений выполняется в интерактивном режиме вычислительного эксперимента с использованием обновляемых систем знаний о задачах, рассматриваемых как конструктивные объекты (в соответствии с методологией формализации знаний о программируемых задачах, созданной в теории S-символов). Технологии ориентированы на реализацию в виде интернет-сервисов. К первому классу отнесены задачи распределения ресурсов, решаемые методом целевого перемещения решения. Ко второму — задачи распределения одного ресурса в иерархических системах с учетом приоритетов расходных статьей, решаемые (в зависимости от заданных обязательных и ориентирующих требований к решению) или методом интервального распределения (при этом входные данные и результат представлены числовыми сегментами), или методом целевого перемещения решения. Постановки задач определяются требованиями к решениям и спецификацией их применимости, которые задает эксперт на основе результатов анализа портретов целевой и достигнутой ситуации. В отличие от известных методов решения задач распределения ресурсов как задач линейного программирования метод целевого перемещения решения нечувствителен к малым изменениям данных и позволяет находить наилучшие приближения к реализуемым решениям при несовместности системы ограничений. В технологиях распределения одного ресурса сегментное представление данных и результатов позволяет более адекватно (по сравнению с точечным представлением) отражать состояние ресурсного пространства системы и повышает практическую применимость решений. Обсуждаемые в статье технологии программно реализованы и применялись для решения задач ресурсного обоснования решений, бюджетного проектирования с учетом приоритетов расходных статей и др. Технология распределения одного ресурса реализована в виде действующего интернет-сервиса планирования расходов. Методологическая состоятельность технологий подтверждена результатами сравнения с известными технологиями решения рассматриваемых задач.
Ключевые слова: линейные задачи распределения ресурсов, технологии решения задач ситуационного распределения ресурсов, пространство ресурсного состояния системы, портреты ситуаций, обязательные и ориентирующие требования к решению, метод целевого перемещения решения, метод интервального распределения, теория S-символов.
Situational resource allocation: review of technologies for solving problems based on knowledge systems
Computer Research and Modeling, 2025, v. 17, no. 4, pp. 543-566The article presents updated technologies for solving two classes of linear resource allocation problems with dynamically changing characteristics of situational management systems and awareness of experts (and/or trained robots). The search for solutions is carried out in an interactive mode of computational experiment using updatable knowledge systems about problems considered as constructive objects (in accordance with the methodology of formalization of knowledge about programmable problems created in the theory of S-symbols). The technologies are focused on implementation in the form of Internet services. The first class includes resource allocation problems solved by the method of targeted solution movement. The second is the problems of allocating a single resource in hierarchical systems, taking into account the priorities of expense items, which can be solved (depending on the specified mandatory and orienting requirements for the solution) either by the interval method of allocation (with input data and result represented by numerical segments), or by the targeted solution movement method. The problem statements are determined by requirements for solutions and specifications of their applicability, which are set by an expert based on the results of the portraits of the target and achieved situations analysis. Unlike well-known methods for solving resource allocation problems as linear programming problems, the method of targeted solution movement is insensitive to small data changes and allows to find feasible solutions when the constraint system is incompatible. In single-resource allocation technologies, the segmented representation of data and results allows a more adequate (compared to a point representation) reflection of the state of system resource space and increases the practical applicability of solutions. The technologies discussed in the article are programmatically implemented and used to solve the problems of resource basement for decisions, budget design taking into account the priorities of expense items, etc. The technology of allocating a single resource is implemented in the form of an existing online cost planning service. The methodological consistency of the technologies is confirmed by the results of comparison with known technologies for solving the problems under consideration.
Keywords: linear resource allocation problems, technologies for solving situational resource allocation problems, states of system’s resource space, profiles of situations, mandatory and orienting requirements for solutions, method of targeted solution movement, interval method of allocation, theory of S-symbols. -
Динамическая теория информации как базис естественно-конструктивистского подхода к моделированию мышления
Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 433-447Рассматриваются основные положения и выводы динамической теории информации (ДТИ). Показано, что ДТИ дает возможность выявить два существенно важных типа информации: объективную (безусловную) и субъективную (условную). Выделяется два способа получения информации: рецепция (восприятие уже существующей информации) и генерация информации (производство новой). Показано, что процессы генерации и рецепции информации должны происходить в двух разных подсистемах одной когнитивной системы. Обсуждаются основные положения естественно-конструктивистского подхода к моделированию мышления. Показано, что любой нейроморфный подход сталкивается с проблемой «провала в описании «Мозга» и «Разума»», т. е. провала между объективно измеримой информации об ансамбле нейронов («Мозг») и субъективной информацией о сознании человека («Разум»). Обсуждается естественно-конструктивистская когнитивная архитектура, разработанная в рамках данного подхода. Она представляет собой сложную блочно-иерархическую комбинацию, собранную из разных нейропро-цессоров. Основная конструктивная особенность этой архитектуры состоит в том, что вся система разделена на две подсистемы (по аналогии с полушариями головного мозга). Одна из подсистем отвечает за восприятие новой информации, обучение и творчество, т. е. за генерацию информации. Другая подсистема отвечает за обработку уже существующей информации, т. е. рецепцию информации. Показано, что низший (нулевой) уровень иерархии представлен процессорами, которые должны записывать образы реальных объектов (распределенная память) как отклик на сенсорные сигналы, что представляет собой объективную информацию (и относится к «Мозгу»). Остальные уровни иерархии представлены процессорами, содержащими символы записанных образов. Показано, что символы представляют собой субъективную (условную) информацию, создаваемую самой системой и обеспечивающую ее индивидуальность. Совокупность высоких уровней иерархии, содержащих символы абстрактных понятий, дает возможность интерпретировать понятия «сознание», «подсознание», «интуиция», относящиеся к области «Разума», в терминах ансамбля нейронов. Таким образом, ДТИ дает возможность построить модель, позволяющую проследить, как на основе «Мозга» возникает «Разум».
Ключевые слова: информация, когнитивный процесс, образ, символ, нейропроцессор, шум, принцип почернения связей, вербализация, борьба условных информаций.
Dynamical theory of information as a basis for natural-constructive approach to modeling a cognitive process
Computer Research and Modeling, 2017, v. 9, no. 3, pp. 433-447Views (last year): 6.The main statements and inferences of the Dynamic Theory Information (DTI) are considered. It is shown that DTI provides the possibility two reveal two essentially important types of information: objective (unconventional) and subjective (conventional) informtion. There are two ways of obtaining information: reception (perception of an already existing one) and generation (production of new) information. It is shown that the processes of generation and perception of information should proceed in two different subsystems of the same cognitive system. The main points of the Natural-Constructivist Approach to modeling the cognitive process are discussed. It is shown that any neuromorphic approach faces the problem of Explanatory Gap between the “Brain” and the “Mind”, i. e. the gap between objectively measurable information about the ensemble of neurons (“Brain”) and subjective information about the human consciousness (“Mind”). The Natural-Constructive Cognitive Architecture developed within the framework of this approach is discussed. It is a complex block-hierarchical combination of several neuroprocessors. The main constructive feature of this architecture is splitting the whole system into two linked subsystems, by analogy with the hemispheres of the human brain. One of the subsystems is processing the new information, learning, and creativity, i.e. for the generation of information. Another subsystem is responsible for processing already existing information, i.e. reception of information. It is shown that the lowest (zero) level of the hierarchy is represented by processors that should record images of real objects (distributed memory) as a response to sensory signals, which is objective information (and refers to the “Brain”). The next hierarchy levels are represented by processors containing symbols of the recorded images. It is shown that symbols represent subjective (conventional) information created by the system itself and providing its individuality. The highest hierarchy levels containing the symbols of abstract concepts provide the possibility to interpret the concepts of “consciousness”, “sub-consciousness”, “intuition”, referring to the field of “Mind”, in terms of the ensemble of neurons. Thus, DTI provides an opportunity to build a model that allows us to trace how the “Mind” could emerge basing on the “Brain”.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




