Результаты поиска по 'требования':
Найдено статей: 54
  1. Ветрин Р.Л., Коберг К.
    Обучение с подкреплением при оптимизации параметров торговой стратегии на финансовых рынках
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1793-1812

    Высокочастотная алгоритмическая торговля — это подкласс трейдинга, ориентированный на получение прибыли на субсекундных временных интервалах. Такие торговые стратегии не зависят от большинства факторов, подходящих для долгосрочной торговли, и требуют особого подхода. Было много попыток использовать методы машинного обучения как для высоко-, так и для низкочастотной торговли. Однако они по-прежнему имеют ограниченное применение на практике из-за высокой подверженности переобучению, требований к быстрой адаптации к новым режимам рынка и общей нестабильности результатов. Мы провели комплексное исследование по сочетанию известных количественных теорий и методов обучения с подкреплением, чтобы вывести более эффективный и надежный подход при построении автоматизированной торговой системы в попытке создать поддержку для известных алгоритмических торговых техник. Используя классические теории поведения цен, а также современные примеры применения в субмиллисекундной торговле, мы применили модели обучения с усилением для улучшения качества алгоритмов. В результате мы создали надежную модель, использующую глубокое обучение с усилением для оптимизации параметров статических торговых алгоритмов, способных к онлайн-обучению на живых данных. Более конкретно, мы исследовали систему на срочном криптовалютном рынке, который в основном не зависит от внешних факторов в краткосрочной перспективе. Наше исследование было реализовано в высокочастотной среде, и итоговые модели показали способность работать в рамках принятых таймфреймов высокочастотной торговли. Мы сравнили различные комбинации подходов глубинного обучения с подкреплением и классических алгоритмов и оценили устойчивость и эффективность улучшений для каждой комбинации.

    Vetrin R.L., Koberg K.
    Reinforcement learning in optimisation of financial market trading strategy parameters
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1793-1812

    High frequency algorithmic trading became is a subclass of trading which is focused on gaining basis-point like profitability on sub-second time frames. Such trading strategies do not depend on most of the factors eligible for the longer-term trading and require specific approach. There were many attempts to utilize machine learning techniques to both high and low frequency trading. However, it is still having limited application in the real world trading due to high exposure to overfitting, requirements for rapid adaptation to new market regimes and overall instability of the results. We conducted a comprehensive research on combination of known quantitative theory and reinforcement learning methods in order derive more effective and robust approach at construction of automated trading system in an attempt to create a support for a known algorithmic trading techniques. Using classical price behavior theories as well as modern application cases in sub-millisecond trading, we utilized the Reinforcement Learning models in order to improve quality of the algorithms. As a result, we derived a robust model which utilize Deep Reinforcement learning in order to optimise static market making trading algorithms’ parameters capable of online learning on live data. More specifically, we explored the system in the derivatives cryptocurrency market which mostly not dependent on external factors in short terms. Our research was implemented in high-frequency environment and the final models showed capability to operate within accepted high-frequency trading time-frames. We compared various combinations of Deep Reinforcement Learning approaches and the classic algorithms and evaluated robustness and effectiveness of improvements for each combination.

  2. Федоров А.А., Сошилов И.В., Логинов В.Н.
    О подходе к разработке и валидации алгоритмов маршрутизации на разрывных сетях
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 983-993

    В данной статье рассматривается проблема централизованного планирования маршрутов передачи данных в сетях, устойчивых к задержкам и разрывам. Исходная проблема расширяется дополнительными требованиями к хранению узлов и процессу связи. Во-первых, предполагается, что связь между узлами графа устанавливается с помощью антенн. Во-вторых, предполагается, что каждый узел имеет хранилище конечной емкости. Существующие работы не рассматривают и не решают задачу с этими ограничениями. Предполагается, что заранее известны информация о сообщениях, подлежащих обработке, информация о конфигурации сети в указанные моменты времени, взятые с определенными периодами, информация о временных задержках для ориентации антенн для передачи данных и ограничения на объем хранения данных на каждом спутнике группировки. Два хорошо известных алгоритма — CGR и Earliest Delivery with All Queues — модифицированы для удовлетворения расширенных требований. Полученные алгоритмы решают задачу поиска оптимального маршрута в сети, устойчивой к разрывам, отдельно для каждого сообщения. Также рассматривается проблема валидации алгоритмов в условиях отсутствия тестовых данных. Предложены и апробированы возможные подходы к валидации, основанные на качественных предположениях, описаны результаты экспериментов. Проведен сравнительный анализ производительности двух алгоритмов решения задачи маршрутизации. Два алгоритма, названные RDTNAS-CG и RDTNAS-AQ, были разработаны на основе алгоритмов CGR и Earliest Delivery with All Queues соответственно. Оригинальные алгоритмы были значительно расширены и была разработана дополненная реализация. Валидационные эксперименты были проведены для проверки минимальных требований «качества» к правильности алгоритмов. Сравнительный анализ производительности двух алгоритмов показал, что алгоритм RDTNAS-AQ на несколько порядков быстрее, чем RDTNAS-CG.

    Fedorov A.A., Soshilov I.V., Loginov V.N.
    Augmented data routing algorithms for satellite delay-tolerant networks. Development and validation
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 983-993

    The problem of centralized planning for data transmission routes in delay tolerant networks is considered. The original problem is extended with additional requirements to nodes storage and communication process. First, it is assumed that the connection between the nodes of the graph is established using antennas. Second, it is assumed that each node has a storage of finite capacity. The existing works do not consider these requirements. It is assumed that we have in advance information about messages to be processed, information about the network configuration at specified time points taken with a certain time periods, information on time delays for the orientation of the antennas for data transmission and restrictions on the amount of data storage on each satellite of the grouping. Two wellknown algorithms — CGR and Earliest Delivery with All Queues are improved to satisfy the extended requirements. The obtained algorithms solve the optimal message routing problem separately for each message. The problem of validation of the algorithms under conditions of lack of test data is considered as well. Possible approaches to the validation based on qualitative conjectures are proposed and tested, and experiment results are described. A performance comparison of the two implementations of the problem solving algorithms is made. Two algorithms named RDTNAS-CG and RDTNAS-AQ have been developed based on the CGR and Earliest Delivery with All Queues algorithms, respectively. The original algorithms have been significantly expanded and an augmented implementation has been developed. Validation experiments were carried to check the minimum «quality» requirements for the correctness of the algorithms. Comparative analysis of the performance of the two algorithms showed that the RDTNAS-AQ algorithm is several orders of magnitude faster than RDTNAS-CG.

  3. Южанин Н.В., Типикин Ю.А., Ганкевич И.Г., Золотарев В.И.
    Комплекс слежения за вычислительными задачами в системе информационной поддержки научных проектов
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 615-620

    В данной работе рассматривается идея системы информационной поддержки научных проектов и построение комплекса слежения за вычислительными задачами. Ввиду больших потребностей в вычислительных экспериментах предоставление информации о вычислительных задачах на HPC-ресурсах становится одной из важнейших проблем. В качестве решения этой проблемы предлагается нестандартное использование системы service desk — построение на ее базе комплекса слежения за выполнением вычислительных задач на распределенной системе и ее сопровождения. Особое внимание в статье уделено анализу и удовлетворению противоречивых требований к комплексу со стороны разных групп пользователей. Помимо этого, рассмотрена система веб-служб, служащая для интеграции комплекса слежения с окружением датацентра. Данный набор веб-служб является основным связующим компонентом системы поддержки научных проектов и позволяет гибко изменять конфигурацию системы в целом в любое время с минимальными потерями.

    Yuzhanin N.V., Tipikin Yu.A., Gankevich I.G., Zolotarev V.I.
    Computational task tracking complex in the scientific project informational support system
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 615-620

    This work describes the idea of the system of informational support for the scientific projects and the development of computational task tracking complex. Due to large requirements for computational experiments the problem of presentation of the information about HPC tasks becomes one of the most important. Nonstandard usage of the service desk system as a basis of the computational task tracking and support system can be the solution of this problem. Particular attention is paid to the analysis and the satisfaction of the conflicting requirements to the task tracking complex from the different user groups. Besides the web service kit used for the integration of the task tracking complex and the datacenter environment is considered. This service kit became the main interconnect between the parts of the scientific project support system and also this kit allows to reconfigure the whole system quickly and safely.

    Views (last year): 2. Citations: 1 (RSCI).
  4. Устименко О.В.
    Особенности управления данными в DIRAC
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 741-744

    Целью данной работы является ознакомление с технологиями хранения больших данных и перспективами развития технологий хранения для распределенных вычислений. Приведен анализ популярных технологий хранения и освещаются возможные ограничения использования.

    Основными проблемами развития технологий хранения данных являются хранение сверхбольших объемов данных, отсутствие качества в обработке таких данных, масштабируемость, отсутствие быстрого доступа к данным и отсутствие реализации интеллектуального поиска данных.

    В работе рассматриваются особенности организации системы управления данными (DMS) программного продукта DIRAC. Приводится описание устройства, функциональности и способов работы с сервисом передачи данных (Data transfer service) для экспериментов физики высоких энергий, которые требуют вычисления задач с широким спектром требований с точки зрения загрузки процессора, доступа к данным или памяти и непостоянной загрузкой использования ресурсов.

    Ustimenko O.V.
    Features DIRAC data management
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 741-744

    The report presents an analysis of Big Data storage solutions in different directions. The purpose of this paper is to introduce the technology of Big Data storage, prospects of storage technologies, for example, the software DIRAC. The DIRAC is a software framework for distributed computing.

    The report considers popular storage technologies and lists their limitations. The main problems are the storage of large data, the lack of quality in the processing, scalability, the lack of rapid availability, the lack of implementation of intelligent data retrieval.

    Experimental computing tasks demand a wide range of requirements in terms of CPU usage, data access or memory consumption and unstable profile of resource use for a certain period. The DIRAC Data Management System (DMS), together with the DIRAC Storage Management System (SMS) provides the necessary functionality to execute and control all the activities related with data.

    Views (last year): 2.
Pages: « first previous

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"