Результаты поиска по 'уравнение переноса':
Найдено статей: 53
  1. Садин Д.В.
    Приложение гибридного метода крупных частиц к расчету взаимодействия ударной волны со слоем газовзвеси
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1323-1338

    Для модельного неоднородного уравнения переноса с источником выполнен анализ устойчивости линейной гибридной схемы (комбинации противопоточной и центральной аппроксимаций). Получены условия устойчивости, зависящие от параметра гибридности, фактора интенсивности источника (произведения интенсивности на шаг по времени) и весового коэффициента линейной комбинации мощности источника на нижнем и верхнем временном слое. В нелинейном случае для уравнений движения неравновесной по скоростям и температурам газовзвеси расчетным путем подтвержден линейный анализ устойчивости. Установлено, что предельно допустимое число Куранта гибридного метода крупных частиц второго порядка точности по пространству и времени при неявном учете трения и теплообмена между газом и частицами не зависит от фактора интенсивности межфазных взаимодействий, шага расчетной сетки и времен релаксации фаз (K-устойчивость). В традиционном случае явного способа расчета источниковых членов для значений безразмерного фактора интенсивности больше 10 наблюдается катастрофическое (на несколько порядков) снижение предельно допустимого числа Куранта, при котором расчетный шаг по времени становится неприемлемо малым.

    На основе базовых соотношений распада разрыва в равновесной гетерогенной среде получено асимптотически точное автомодельное решение задачи взаимодействия ударной волны со слоем газовзвеси, к которому сходится численное решение двухскоростной двухтемпературной динамики газовзвеси при уменьшении размеровди сперсных частиц.

    Изучены динамика движения скачка уплотнения в газе и его взаимодействия с ограниченным слоем газовзвеси для различных размеров дисперсных частиц: 0.1, 2 и 20 мкм. Задача характеризуется двумя распадами разрывов: отраженной и преломленной ударными волнами на левой границе слоя, отраженной волной разрежения и прошедшим скачком уплотнения на правой контактной границе. Обсуждено влияние релаксационных процессов (безразмерных времен релаксации фаз) на характер течения газовзвеси. Для мелких частиц времена выравнивания скоростей и температур фаз малы, а зоны релаксации являются подсеточными. Численное решение в характерных точках с относительной точностью $O\, (10^{−4})$  сходится к автомодельным решениям.

    For a non-homogeneous model transport equation with source terms, the stability analysis of a linear hybrid scheme (a combination of upwind and central approximations) is performed. Stability conditions are obtained that depend on the hybridity parameter, the source intensity factor (the product of intensity per time step), and the weight coefficient of the linear combination of source power on the lower- and upper-time layer. In a nonlinear case for the non-equilibrium by velocities and temperatures equations of gas suspension motion, the linear stability analysis was confirmed by calculation. It is established that the maximum permissible Courant number of the hybrid large-particle method of the second order of accuracy in space and time with an implicit account of friction and heat exchange between gas and particles does not depend on the intensity factor of interface interactions, the grid spacing and the relaxation times of phases (K-stability). In the traditional case of an explicit method for calculating the source terms, when a dimensionless intensity factor greater than 10, there is a catastrophic (by several orders of magnitude) decrease in the maximum permissible Courant number, in which the calculated time step becomes unacceptably small.

    On the basic ratios of Riemann’s problem in the equilibrium heterogeneous medium, we obtained an asymptotically exact self-similar solution of the problem of interaction of a shock wave with a layer of gas-suspension to which converge the numerical solution of two-velocity two-temperature dynamics of gassuspension when reducing the size of dispersed particles.

    The dynamics of the shock wave in gas and its interaction with a limited gas suspension layer for different sizes of dispersed particles: 0.1, 2, and 20 ìm were studied. The problem is characterized by two discontinuities decay: reflected and refracted shock waves at the left boundary of the layer, reflected rarefaction wave, and a past shock wave at the right contact edge. The influence of relaxation processes (dimensionless phase relaxation times) to the flow of a gas suspension is discussed. For small particles, the times of equalization of the velocities and temperatures of the phases are small, and the relaxation zones are sub-grid. The numerical solution at characteristic points converges with relative accuracy $O \, (10^{-4})$ to self-similar solutions.

  2. Волошин А.С., Конюхов А.В., Панкратов Л.С.
    Усредненная модель двухфазных капиллярно-неравновесных течений в среде с двойной пористостью
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 567-580

    Построена математическая модель двухфазных капиллярно-неравновесных изотермических течений несжимаемых фаз в среде с двойной пористостью. Рассматривается среда с двойной пористостью, которая представляет собой композицию двух пористых сред с контрастными капиллярными свойствами (абсолютной проницаемостью, капиллярным давлением). Одна из составляющих сред обладает высокой проницаемостью и является проводящей, вторая характеризуется низкой проницаемостью и образует несвязную систему матричных блоков. Особенностью модели является учет влияния капиллярной неравновесности на массообмен между подсистемами двойной пористости, при этом неравновесные свойства двухфазного течения в составляющих средах описываются в линейном приближении в рамках модели Хассанизаде. Усреднение методом формальных асимптотических разложений приводит к системе дифференциальных уравнений в частных производных, коэффициенты которой зависят от внутренних переменных, определяемых из решения ячеечных задач. Численное решение ячеечных задач для системы уравнений в частных производных является вычислительно затратным. Поэтому для внутреннего параметра, характеризующего распределение фаз между подсистемами двойной пористости, формулируется термодинамически согласованное кинетическое уравнение. Построены динамические относительные фазовые проницаемости и капиллярное давление в процессах дренирования и пропитки. Показано, что капиллярная неравновесность течений в составляющих подсистемах оказывает на них сильное влияние. Таким образом, анализ и моделирование этого фактора является важным в задачах переноса в системах с двойной пористостью.

    Voloshin A.S., Konyukhov A.V., Pankratov L.S.
    Homogenized model of two-phase capillary-nonequilibrium flows in a medium with double porosity
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 567-580

    A mathematical model of two-phase capillary-nonequilibrium isothermal flows of incompressible phases in a double porosity medium is constructed. A double porosity medium is considered, which is a composition of two porous media with contrasting capillary properties (absolute permeability, capillary pressure). One of the constituent media has high permeability and is conductive, the second is characterized by low permeability and forms an disconnected system of matrix blocks. A feature of the model is to take into account the influence of capillary nonequilibrium on mass transfer between subsystems of double porosity, while the nonequilibrium properties of two-phase flow in the constituent media are described in a linear approximation within the Hassanizadeh model. Homogenization by the method of formal asymptotic expansions leads to a system of partial differential equations, the coefficients of which depend on internal variables determined from the solution of cell problems. Numerical solution of cell problems for a system of partial differential equations is computationally expensive. Therefore, a thermodynamically consistent kinetic equation is formulated for the internal parameter characterizing the phase distribution between the subsystems of double porosity. Dynamic relative phase permeability and capillary pressure in the processes of drainage and impregnation are constructed. It is shown that the capillary nonequilibrium of flows in the constituent subsystems has a strong influence on them. Thus, the analysis and modeling of this factor is important in transfer problems in systems with double porosity.

  3. Назаров Ф.Х.
    Численное исследование высокоскоростных слоев смешения на основе двухжидкостной модели турбулентности
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1125-1142

    Данная работа посвящена численному исследованию высокоскоростных слоев смешения сжимаемых потоков. Рассматриваемая задача имеет широкий спектр применения в практических задачах и, несмотря на кажущуюся простоту, является достаточно сложной в плане моделирования, потому что в слое смешения в результате неустойчивости тангенциального разрыва скоростей поток от ламинарного течения переходит к турбулентному режиму. Поэтому полученные численные результаты рассмотренной задачи сильно зависят от адекватности используемых моделей турбулентности. В представленной работе данная задача исследуется на основе двухжидкостного подхода к проблеме турбулентности. Данный подход возник сравнительно недавно и достаточно быстро развивается. Главное преимущество двухжидкостного подхода — в том, что он ведет к замкнутой системе уравнений, тогда как известно, что давний подход Рейнольдса ведет к незамкнутой системе. В работе представлены суть двухжидкостного подхода для моделирования турбулентной сжимаемой среды и методика численной реализации предлагаемой модели. Для получения стационарного решения поставленной задачи применен метод установления и использована теория пограничного слоя Прандтля, которая ведет к упрощенной системе уравнений. В рассматриваемой задаче происходит смешение высокоскоростных потоков. Следовательно, необходимо моделировать также перенос тепла и давление нельзя считать постоянным, как это делается для несжимаемых потоков. При численной реализации конвективные члены в гидродинамических уравнениях аппроксимировались против потока вторым порядка точности в явном виде, а диффузионные члены в правых частях уравнений аппроксимировались центральной разностью в неявном виде. Для реализации полученных уравнений использовался метод прогонки. Для коррекции скорости через давления использован метод SIMPLE. В работе проведено исследование двухжидкостной модели турбулентности при различных начальных возмущениях потока. Полученные численные результаты показали, что хорошее соответствие с известными опытными данными наблюдается при интенсивности турбулентности на входе $0,1 < I < 1 \%$. Для демонстрации эффективности предлагаемой модели турбулентности представлены также данные известных экспериментов, а также результаты моделей $k − kL + J$ и LES. Показано, что двухжидкостная модель по точности не уступает известным современным моделям, а по затрате вычислительных ресурсов является более экономичной.

    Nazarov F.K.
    Numerical study of high-speed mixing layers based on a two-fluid turbulence model
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1125-1142

    This work is devoted to the numerical study of high-speed mixing layers of compressible flows. The problem under consideration has a wide range of applications in practical tasks and, despite its apparent simplicity, is quite complex in terms of modeling. Because in the mixing layer, as a result of the instability of the tangential discontinuity of velocities, the flow passes from laminar flow to turbulent mode. Therefore, the obtained numerical results of the considered problem strongly depend on the adequacy of the used turbulence models. In the presented work, this problem is studied based on the two-fluid approach to the problem of turbulence. This approach has arisen relatively recently and is developing quite rapidly. The main advantage of the two-fluid approach is that it leads to a closed system of equations, when, as is known, the long-standing Reynolds approach leads to an open system of equations. The paper presents the essence of the two-fluid approach for modeling a turbulent compressible medium and the methodology for numerical implementation of the proposed model. To obtain a stationary solution, the relaxation method and Prandtl boundary layer theory were applied, resulting in a simplified system of equations. In the considered problem, high-speed flows are mixed. Therefore, it is also necessary to model heat transfer, and the pressure cannot be considered constant, as is done for incompressible flows. In the numerical implementation, the convective terms in the hydrodynamic equations were approximated by the upwind scheme with the second order of accuracy in explicit form, and the diffusion terms in the right-hand sides of the equations were approximated by the central difference in implicit form. The sweep method was used to implement the obtained equations. The SIMPLE method was used to correct the velocity through the pressure. The paper investigates a two-liquid turbulence model with different initial flow turbulence intensities. The obtained numerical results showed that good agreement with the known experimental data is observed at the inlet turbulence intensity of $0.1 < I < 1 \%$. Data from known experiments, as well as the results of the $k − kL + J$ and LES models, are presented to demonstrate the effectiveness of the proposed turbulence model. It is demonstrated that the two-liquid model is as accurate as known modern models and more efficient in terms of computing resources.

  4. Жихарев Я.М., Черемисин Ф.Г., Клосс Ю.Ю.
    Моделирование разделения смеси газов в многоступенчатом микронасосе, основанное на решении уравнения Больцмана
    Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1417-1432

    В работе проводятся моделирование смеси газов в многокаскадном микронасосе и оценка его эффективности при разделении компонентов смеси. Рассматривается устройство в виде протяженного канала с последовательностью поперечно расположенных пластин, различие температур сторон которых приводит к радиометрическому течению газа внутри. Скорость течения газов зависит от их масс, что приводит к разделению смеси. Моделирование основывается на численном решении кинетического уравнения Больцмана, для чего используется схема расщепления, при которой поочередно осуществляются решения уравнений переноса и задач релаксации. Вычисление интеграла столкновений осуществляется с помощью консервативного проекционного метода, при использовании которого строго выполняются законы сохранения массы, импульса и энергии, и важное асимптотическое свойство — равенство интеграла от максвелловской функции нулю. Для решения уравнения переноса используются явная разностная схема первого порядка точности и TVD-схема второго порядка. Расчеты проводятся для смеси неона и аргона в модели твердых сфер с реальным отношением молекулярных диаметров и масс. Разработана программно-моделирующая среда, которая позволяет проводить расчеты как на персональных компьютерах, так и на многопроцессорных кластерах. Использование распараллеливания приводит к ускорению вычислений относительно последовательной версии и постоянству времени одной итерации для устройств разных размеров, что позволило моделировать системы с большим числом пластин. Подобраны геометрические размеры устройства, при которых разделения смеси оказывается наибольшим. Обнаружено, что величина разделения смеси, то есть отношение концентраций на концах устройства линейно зависит от числа каскадов в устройстве, что дает возможность оценить разделение для многокаскадных систем, компьютерное моделирование которых невозможно. Построены изображения и проведен анализ течений и распределений концентраций газов внутри устройства во время его работы. Показано, что устройства такого вида при достаточно большом числе пластин подходят для разделения газовых смесей, притом что они не имеют движущихся частей и, соответственно, достаточно просты в изготовлении и мало подвержены износу.

    Zhikharev I.M., Tcheremissine F.G., Kloss Y.Y.
    Modeling of gas mixture separation in a multistage micropump based on the solution of the Boltzmann equation
    Computer Research and Modeling, 2024, v. 16, no. 6, pp. 1417-1432

    The paper simulates a mixture of gases in a multi-stage micro-pump and evaluates its effectiveness at separating the components of the mixture. A device in the form of a long channel with a series of transverse plates is considered. A temperature difference between the sides of the plates induces a radiometric gas flow within the device, and the differences in masses of the gases lead to differences in flow velocities and to the separation of the mixture. Modeling is based on the numerical solution of the Boltzmann kinetic equation, for which a splitting scheme is used, i. e., the advection equation and the relaxation problem are solved separately in alternation. The calculation of the collision integral is performed using the conservative projection method. This method ensures the strict fulfillment of the laws of conservation of mass, momentum, and energy, as well as the important asymptotic property of the equality of the integral of the Maxwell function to zero. Explicit first-order and second-order TVD-schemes are used to solve the advection equation. The calculations were performed for a neon-argon mixture using a model of solid spheres with real molecular diameters and masses. Software has been developed to allow calculations on personal computers and cluster systems. The use of parallelization leads to faster computation and constant time per iteration for devices of different sizes, enabling the modeling of large particle systems. It was found that the value of mixture separation, i. e. the ratio of densities at the ends of the device linearly depends on the number of cascades in the device, which makes it possible to estimate separation for multicascade systems, computer modeling of which is impossible. Flows and distributions of gas inside the device during its operation were analyzed. It was demonstrated that devices of this kind with a sufficiently large number of plates are suitable for the separation of gas mixtures, given that they have no moving parts and are quite simple in manufacture and less subject to wear.

  5. Черепанов В.В.
    Моделирование теплового поля неподвижных симметричных тел в разреженной низкотемпературной плазме
    Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 73-91

    В работе исследуется процесс самосогласованной релаксации области возмущений, созданных в разреженной бинарной низкотемпературной плазме неподвижным заряженным шаром или цилиндром с абсорбирующей поверхностью. Особенностью подобных задач является их самосогласованный кинетический характер, при котором нельзя отделить процессы переноса в фазовом пространстве и формирования электромагнитного поля. Представлена математическая модель, позволяющая описывать и анализировать состояние газа, электрическое и тепловое поле в окрестности тела. Многомерность кинетической формулировки создает определенные проблемы при численном решении, поэтому для задачи подобрана криволинейная система неголономных координат, которая минимизирует ее фазовое пространство, что способствует повышению эффективности численных методов. Для таких координат обоснована и проанализирована форма кинетического уравнения Власова. Для его решения использован вариант метода крупных частиц с постоянным форм-фактором. В расчетах применялась подвижная сетка, отслеживающая смещение в фазовом пространстве носителя функции распределения, что дополнительно уменьшило объем контролируемой области фазового пространства. Раскрыты ключевые детали модели и численного метода. Модель и метод реализованы в виде кода на языке Matlab. На примере решения задачи для шара показано наличие в возмущенной зоне существенного неравновесия и анизотропии в распределении частиц по скорости. По результатам расчетов представлены картины эволюции структуры функции распределения частиц, профилей основных макроскопических характеристик газа — концентрации, тока, температуры и теплового потока, характеристик электрического поля в возмущенной области. Установлен механизм разогрева притягивающихся частиц в возмущенной зоне и показаны некоторые важные особенности процесса формирования теплового потока. Получены результаты, хорошо объяснимые с физической точки зрения, что подтверждает адекватность модели и корректность работы программного инструмента. Отмечаются создание и апробация основы для разработки в перспективе инструментов решения и более сложных задач моделирования поведения ионизированных газов вблизи заряженных тел.

    Работа будет полезной специалистам в области математического моделирования, процессов тепло- и массообмена, физики низкотемпературной плазмы, аспирантам и студентам старших курсов, специализирующимся в указанных направлениях.

    Cherepanov V.V.
    Modeling the thermal field of stationary symmetric bodies in rarefied low-temperature plasma
    Computer Research and Modeling, 2025, v. 17, no. 1, pp. 73-91

    The work investigates the process of self-consistent relaxation of the region of disturbances created in a rarefied binary low-temperature plasma by a stationary charged ball or cylinder with an absorbing surface. A feature of such problems is their self-consistent kinetic nature, in which it is impossible to separate the processes of transfer in phase space and the formation of an electromagnetic field. A mathematical model is presented that makes it possible to describe and analyze the state of the gas, electric and thermal fields in the vicinity of the body. The multidimensionality of the kinetic formulation creates certain problems in the numerical solution, therefore a curvilinear system of nonholonomic coordinates was selected for the problem, which minimizes its phase space, which contributes to increasing the efficiency of numerical methods. For such coordinates, the form of the Vlasov kinetic equation has been justified and analyzed. To solve it, a variant of the large particle method with a constant form factor was used. The calculations used a moving grid that tracks the displacement of the distribution function carrier in the phase space, which further reduced the volume of the controlled region of the phase space. Key details of the model and numerical method are revealed. The model and the method are implemented as code in the Matlab language. Using the example of solving a problem for a ball, the presence of significant disequilibrium and anisotropy in the particle velocity distribution in the disturbed zone is shown. Based on the calculation results, pictures of the evolution of the structure of the particle distribution function, profiles of the main macroscopic characteristics of the gas — concentration, current, temperature and heat flow, and characteristics of the electric field in the disturbed region are presented. The mechanism of heating of attracted particles in the disturbed zone is established and some important features of the process of formation of heat flow are shown. The results obtained are well explainable from a physical point of view, which confirms the adequacy of the model and the correct operation of the software tool. The creation and testing of a basis for the development in the future of tools for solving more complex problems of modeling the behavior of ionized gases near charged bodies is noted.

    The work will be useful to specialists in the field of mathematical modeling, heat and mass transfer processes, lowtemperature plasma physics, postgraduate students and senior students specializing in the indicated areas.

  6. Аристова Е.Н., Байдин Д.Ф.
    Экономичный метод решения уравнения переноса в 2D цилиндрической и 3D гексагональной геометриях для метода квазидиффузии
    Компьютерные исследования и моделирование, 2011, т. 3, № 3, с. 279-286

    В работе описан предложенный экономичный метод решения стационарного уравнения переноса в x-y-z-геометрии. Решение уравнения проводится на гексагональной сетке, отражающей структуру поперечного сечения активной зоны реактора. Использованный метод коротких характеристик наследует методические наработки двумерного расчета. Применяются характеристический и консервативно-характеристический методы решения уравнения в ячейке сетки. В трехмерной геометрии подтверждено преимущество консервативного метода и хорошая точность полученного численного решения, особенно компонентов тензора квазидиффузии.

    Aristova E.N., Baydin D.F.
    Efficient method of the transport equation calculation in 2D cylindrical and 3D hexagonal geometries for quasi-diffusion method
    Computer Research and Modeling, 2011, v. 3, no. 3, pp. 279-286

    Efficient method for numerical solving of the steady transport equation in x-y-z-geometry has been suggested. The equation is being solved on hexagonal mesh, reflecting real structure of the reactor active zone cross-section. Method of characteristics is used, that inherits all the outcomes from the two-dimensional r-z-geometry calculation. Two variants of the method of characteristics have been applied for solving the transport equation in a cell: method of short characteristics and its conservative modification. It has been confirmed that in three-dimensional geometry conservative method has advantage over pure characteristic and it produces highly accurate solution, especially for quasi-diffusion tensor components.

    Citations: 4 (RSCI).
  7. Губанов С.М., Дурновцев М.И., Картавых А.А., Крайнов А.Ю.
    Численное моделирование воздушного охлаждения емкости для десублимации компонентов газовой смеси
    Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 521-529

    В химической технологии для получения очищенного конечного продукта часто используется процесс десублимации. Для этого используются охлаждаемые жидким азотом или холодным воздухом емкости. Смесь газов протекает внутри емкости и охлаждается до температуры конденсации или десублимации некоторых компонентов газовой смеси. Конденсированные компоненты оседают на стенках емкости. В статье представлена математическая модель для расчета охлаждения емкостей для десублимации паров охлажденным воздухом. Математическая модель основана на уравнениях газовой динамики и описывает течение охлажденного воздуха в трубопроводе и воздушном теплообменнике с учетом теплообмена и трения. Теплота фазового перехода учитывается в граничном условии для уравнения теплопроводности путем задания потока тепла. Перенос тепла в теплоизолированных стенках трубопровода и в стенках емкости описывается нестационарными уравнениями теплопроводности. Решение системы уравнений проводится численно. Уравнения газовой динамики решаются методом С. К. Годунова. Уравнения теплопроводности решаются по неявной разностной схеме. В статье приведены результаты расчетов охлаждения двух последовательно установленных емкостей. Начальная температура емкостей равна 298 К. Холодный воздух течет по трубопроводу, через теплообменник первой емкости, затем по трубопроводу в теплообменник второй емкости. За 20 минут емкости остывают до рабочей температуры. Температура стенок емкостей отличается от температуры воздуха на величину не более чем 1 градус. Поток охлажденного воздуха позволяет поддерживать изотермичность стенок емкости в процессе десублимации компонентов из газовой смеси. Приведены результаты аналитической оценки времени охлаждения емкости и разности температуры между стенками емкости и воздухом в режиме десублимации паров. Аналитическая оценка основана на определении времени термической релаксации температуры стенок емкости. Результаты аналитических оценок удовлетворительно совпадают с результатами расчетов по представленной модели. Предложенный подход позволяет проводить расчет охлаждения емкостей потоком холодного воздуха, подаваемого по трубопроводной системе.

    Gubanov S.M., Durnovtsev M.I., Kartavih A.A., Krainov A.Y.
    Numerical simulation of air cooling the tank to desublimate components of the gas mixture
    Computer Research and Modeling, 2016, v. 8, no. 3, pp. 521-529

    For the production of purified final product in chemical engineering used the process of desublimation. For this purpose, the tank is cooled by liquid nitrogen or cold air. The mixture of gases flows inside the tank and is cooled to the condensation or desublimation temperature some components of the gas mixture. The condensed components are deposited on the walls of the tank. The article presents a mathematical model to calculate the cooling air tanks for desublimation of vapours. A mathematical model based on equations of gas dynamics and describes the movement of cooled air in the duct and the heat exchanger with heat exchange and friction. The heat of the phase transition is taken into account in the boundary condition for the heat equation by setting the heat flux. Heat transfer in the walls of the pipe and in the tank wall is described by the nonstationary heat conduction equations. The solution of the system of equations is carried out numerically. The equations of gas dynamics are solved by the method of S. K. Godunov. The heat equation are solved by an implicit finite difference scheme. The article presents the results of calculations of the cooling of two successively installed tanks. The initial temperature of the tanks is equal to 298 K. Cold air flows through the tubing, through the heat exchanger of the first tank, then through conduit to the heat exchanger second tank. During the 20 minutes of tank cool down to operating temperature. The temperature of the walls of the tanks differs from the air temperature not more than 1 degree. The flow of cooling air allows to maintain constant temperature of the walls of the tank in the process of desublimation components from a gas mixture. The results of analytical evaluation of the time of cooling tank and temperature difference between the tank walls and air with the vapor desublimation. Analytical assessment is based on determining the time of heat relaxation temperature of the tank walls. The results of evaluations are satisfactorily coincide with the results of calculations by the present model. The proposed approach allows calculating the cooling tanks with a flow of cold air supplied via the pipeline system.

    Views (last year): 3. Citations: 1 (RSCI).
  8. Назаров В.Г., Прохоров И.В., Яровенко И.П.
    Идентификация неоднородного вещества методами импульсной мультиэнергетической томографии
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 621-639

    В статье рассматриваются математические аспекты проблемы идентификации многокомпонентной рассеивающей среды по данным импульсного мультиэнергетического рентгеновского облучения. Задачи рентгеновской диагностики представляют значительный интерес как с теоретической, так и с практической точки зрения, а радиографические методыне заменимы при неразрушающем контроле изделий.

    В рамках математической модели на основе нестационарного интегро-дифференциального уравнения переноса излучения сформулированы обратная задача нахождения коэффициента ослабления по излучению, известному на границе области, и задача идентификации вещества по найденным значениям коэффициента ослабления на дискретном наборе энергий облучения среды. Проведена предварительная обработка широкого списка веществ, представляющих интерес в компьютерной томографии, на предмет возможности их идентификации по приближенно заданному коэффициенту ослабления излучения, характеризующему среду. При анализе степени близости веществ в некоторой норме установлено, что множество всех возможных веществ, потенциально содержащихся в среде, распадается на конечное число непересекающихся кластеров. При достаточно малой длительности зондирующего сигнала рассеивающая составляющая выходящего из среды излучения асимптотически мала. Это обстоятельство позволяет свести обратную задачу для уравнения переноса излучения к задаче обращения преобразования Радона от коэффициента ослабления. Методами численного моделирования на специально разработанном цифровом фантоме анализируется возможность однозначной или частичной идентификации вещества при варьировании длительности зондирующего импульса и числа энергетических уровней облучения среды.

    Nazarov V.G., Prokhorov I.V., Yarovenko I.P.
    Identification of inhomogeneous matter by pulsed multienergy tomography methods
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 621-639

    The article considers the mathematical aspects of the problem of identifying a multicomponent scattering medium based on pulsed multienergy X-ray irradiation data. X-ray diagnostics problems are of considerable interest from both theoretical and practical points of view, and radiographic methods are indispensable in non-destructive testing of products.

    Within the framework of a mathematical model based on a non-stationary integro-differential equation of radiation transfer, the inverse problem of finding the attenuation coefficient for radiation known at the boundary of the region and the problem of identifying a substance based on the found values of the attenuation coefficient on a discrete set of irradiation energies of the medium are formulated.

    A preliminary processing of a wide list of substances of interest in computed tomography was carried out to determine the possibility of their identification by an approximately specified radiation attenuation coefficient characterizing the medium. When analyzing the degree of proximity of substances in a certain norm, it was found that the set of all possible substances potentially contained in the medium is divided into a finite number of non-intersecting clusters. For a sufficiently short duration of the probing signal, the scattering component of the radiation leaving the medium is asymptotically small. This circumstance allows us to reduce the inverse problem for the radiation transfer equation to the problem of inverting the Radon transform from the attenuation coefficient. The possibility of unambiguous or partial identification of a substance by varying the duration of the probing pulse and the number of energy levels of irradiation of the medium is analyzed using numerical modeling methods on a specially developed digital phantom.

  9. Фиалко Н.С.
    Смешанный алгоритм расчета динамики переноса заряда в ДНК на больших временных интервалах
    Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 63-72

    Перенос заряда в ДНК моделируется с помощью дискретной модели Холстейна «квантовая частица + классическая цепочка сайтов + взаимодействие». Влияние температуры термостата учитывается с помощью случайной силы, действующей на классические сайты (уравнение Ланжевена). Таким образом, динамика распространения заряда вдоль цепочки описывается системой ОДУ со случайной правой частью. Для интегрирования таких систем обычно применяют алгоритмы 1 или 2 порядка. Мы разработали смешанный алгоритм, имеющий 4 порядок точности по быстрым «квантовым» переменным (заметим, что в «квантовой» подсистеме должно соблюдаться условие: «сумма вероятностей нахождения заряда на сайте постоянна по времени») и 2 порядок по медленным «классическим» переменным, на которые действует случайная сила. Алгоритм позволяет считать на бóльших временах, чем стандартные. В качестве примера приведен модельный расчет развала полярона в однородной цепочке под действием температурных флуктуаций.

    Fialko N.S.
    Mixed algorithm for modeling of charge transfer in DNA on long time intervals
    Computer Research and Modeling, 2010, v. 2, no. 1, pp. 63-72

    Charge transfer in DNA is simulated by a discrete Holstein model «quantum particle + classical site chain + interaction». Thermostat temperature is taken into account as stochastic force, which acts on classical sites (Langevin equation). Thus dynamics of charge migration along the chain is described by ODE system with stochastic right-hand side. To integrate the system numerically, algorithms of order 1 or 2 are usually applied. We developed «mixed» algorithm having 4th order of accuracy for fast «quantum» variables (note that in quantum subsystem the condition «sum of probabilities of charge being on site is time-constant» must be held), and 2nd order for slow classical variables, which are affecting by stochastic force. The algorithm allows us to calculate trajectories on longer time intervals as compared to standard algorithms. Model calculations of polaron disruption in homogeneous chain caused by temperature fluctuations are given as an example.

    Views (last year): 2. Citations: 2 (RSCI).
  10. Шильков А.В., Герцев М.Н., Аристова Е.Н., Шилькова С.В.
    Методика эталонных «line-by-line» расчетов атмосферной радиации
    Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 553-562

    В работе описана методика «line-by-line» расчета тепловой радиации Земли и земной атмосферы. Расчет пространственно-углового распределения радиации производится численным интегрированием кинетического уравнения переноса излучения и уравнений для угловых моментов методом квазидиффузии. В качестве исходных данных для восстановления оптических параметров атмосферы используется банк линий молекулярного поглощения HITRAN [Rothman et al., 2009].

    Shilkov A.V., Gertsev M.N., Aristova E.N., Shilkova S.V.
    Benchmark «line-by-line» calculations of atmospheric radiation
    Computer Research and Modeling, 2012, v. 4, no. 3, pp. 553-562

    The paper presents the methodology of «line-by-line» calculations of the Earth and atmosphere thermal radiation. Intensity of radiation is computed by numerical integration of the radiative transfer kinetic equation and the system of the angular momentum equations using quasi-diffusion method. Data from HITRAN molecular spectroscopic database [Rothman et al., 2009] are used to calculate the atmosphere optical parameters.

    Views (last year): 4. Citations: 3 (RSCI).
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"