All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Autonomous Noetherian boundaryvalue problem in special critical case
Computer Research and Modeling, 2011, v. 3, no. 4, pp. 337-351Views (last year): 4. Citations: 1 (RSCI).The necessary and sufficient terms of solution existence of nonlinear autonomous Noetherian boundary-value problem are found in special critical case. The characteristic feature of the set problems is impossibility of direct application of traditional research schematic representation and construction of solutions of critical boundary-value problems, which was created in works of I.G. Malkin, A.M. Samoilenko, E.A. Grebenikov, Yu.A. Ryabov and A.A. Boichuk. For the solution construction of Noetherian boundary-value problem in special critical case an iterative procedure is recommended, it is constructed according to the scheme of least-squares method. Efficiency of the offered technique is shown on the example of analysis for periodic problems for Hill equation.
-
Periodic boudary-value problem for Hill's equation in the case of parametric resonance
Computer Research and Modeling, 2014, v. 6, no. 1, pp. 27-43Views (last year): 1.Necessary and sufficient conditions for the existence of solutions of nonlinear nonautonomous periodic problem for Hill’s equation in the case of parametric resonance. A characteristic feature of the task is the need of finding, as desired solution, and the corresponding eigenfunction, which ensures solvability of the periodic problem for Hill’s equation in the case of parametric resonance. To construct solutions of the periodic problem for Hill’s equation and the corresponding eigenfunction in the case of parametric resonance proposed iterative scheme, based on the method of simple iterations with used list-square technics.
-
On population migration in an ecological niche with a spatially heterogeneous local capacity
Computer Research and Modeling, 2025, v. 17, no. 3, pp. 483-500The article describes the migration process of a certain population, taking into account the spatial heterogeneity of the local capacity of the ecological niche. It is assumed that this spatial heterogeneity is caused by various natural or artificial factors. The mathematical model of the migration process under consideration is a Cauchy problem on a straight line for some quasi-linear partial differential equation of the first order, which is satisfied by the linear population density under consideration. In this paper, a general solution to this Cauchy problem is found for an arbitrary dependence of the local capacity of an ecological niche on the spatial coordinate. This general solution was applied to describe the migration of the population in question in two different cases: in the case of a dependence of the local capacity of the ecological niche on the spatial coordinate in the form of a smooth step and in the case of a hill-like dependence of the local capacity of the ecological niche on the spatial coordinate. In both cases, the solution to the Cauchy problem is expressed in terms of higher transcendental functions. By applying special relations to the model parameters, these higher transcendental functions are reduced to elementary functions, which makes it possible to obtain exact model solutions explicitly expressed in terms of elementary functions. With the help of these precise solutions, an extensive program of computational experiments has been implemented, showing how the initial population density of the Gaussian form is dispersed by the considered two types of spatial heterogeneity of the local capacity of the ecological niche. These computational experiments have shown that when passing through both step-like and hill-like spatial inhomogeneities of the local capacity of an ecological niche with a narrow Gaussian width of its initial density compared to the characteristic spatial scale of these inhomogeneities, the system forgets its initial state. In particular, if we interpret the system under study as a population living in an extended calm rectilinear river along its bed, then it can be argued that under this initial condition, after the current of this river carries the population under consideration through the area of spatial heterogeneity of the local capacity of the ecological niche, the population density becomes a quasi-rectangular function.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




