Результаты поиска по 'Z-схема':
Найдено статей: 192
  1. Кащенко Н.М., Ишанов С.А., Зубков Е.В.
    Численная модель переноса в задачах неустойчивостей низкоширотной ионосферы Земли с использованием двумерной монотонизированной Z-схемы
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1011-1023

    Целью работы является исследование монотонной конечно-разностной схемы второго порядка точности, созданной на основе обобщения одномерной Z-схемы. Исследование проведено для модельных уравнений переноса несжимаемой среды. В работе описано двумерное обобщение Z-схемы с нелинейной коррекцией, использующей вместо потоков косые разности, содержащие значения из разных временных слоев. Численно проверена монотонность полученной нелинейной схемы для функций-ограничителей двух видов, как для гладких решений, так и для негладких, и получены численные оценки порядка точности построенной схемы. Построенная схема является абсолютно устойчивой, но теряет свойство монотонности при превышении шага Куранта. Отличительной особенностью предложенной конечно-разностной схемы является минимальность ее шаблона.

    Построенная численная схема предназначена для моделей плазменных неустойчивостей различных масштабов в низкоширотной ионосферной плазме Земли. Одна из реальных задач, при решении которых возникают подобные уравнения, — это численное моделирование сильно нестационарных среднемасштабных процессов в земной ионосфере в условиях возникновения неустойчивости Рэлея – Тейлора и плазменных структур с меньшими масштабами, механизмами генерации которых являются неустойчивости других типов, что приводит к явлению F-рассеяния. Вследствие того, что процессы переноса в ионосферной плазме контролируются магнитным полем, в поперечном к магнитному полю направле- нии предполагается выполнение условия несжимаемости плазмы.

    Kashchenko N.M., Ishanov S.A., Zubkov E.V.
    Numerical model of transport in problems of instabilities of the Earth’s low-latitude ionosphere using a two-dimensional monotonized Z-scheme
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1011-1023

    The aim of the work is to study a monotone finite-difference scheme of the second order of accuracy, created on the basis of a generalization of the one-dimensional Z-scheme. The study was carried out for model equations of the transfer of an incompressible medium. The paper describes a two-dimensional generalization of the Z-scheme with nonlinear correction, using instead of streams oblique differences containing values from different time layers. The monotonicity of the obtained nonlinear scheme is verified numerically for the limit functions of two types, both for smooth solutions and for nonsmooth solutions, and numerical estimates of the order of accuracy of the constructed scheme are obtained.

    The constructed scheme is absolutely stable, but it loses the property of monotony when the Courant step is exceeded. A distinctive feature of the proposed finite-difference scheme is the minimality of its template. The constructed numerical scheme is intended for models of plasma instabilities of various scales in the low-latitude ionospheric plasma of the Earth. One of the real problems in the solution of which such equations arise is the numerical simulation of highly nonstationary medium-scale processes in the earth’s ionosphere under conditions of the appearance of the Rayleigh – Taylor instability and plasma structures with smaller scales, the generation mechanisms of which are instabilities of other types, which leads to the phenomenon F-scattering. Due to the fact that the transfer processes in the ionospheric plasma are controlled by the magnetic field, it is assumed that the plasma incompressibility condition is fulfilled in the direction transverse to the magnetic field.

  2. Недбайло Ю.А., Сурченко А.В., Бычков И.Н.
    Снижение частоты промахов в неинклюзивный кэш с инклюзивным справочником многоядерного процессора
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 639-656

    Хотя эпоха экспоненциального роста производительности компьютерных микросхем закончилась, даже настольные процессоры общего назначения сегодня имеют 16 и больше ядер. Поскольку пропускная способность памяти DRAM растет не с такой скоростью, как вычислительная мощность ядер, разработчики процессоров должны искать пути уменьшения частоты обменов с памятью на одну инструкцию. Непосредственным путем к этому является снижение частоты промахов в кэш последнего уровня. Предполагая уже реализованной схему «неинклюзивный кэш с инклюзивным справочником» (NCID), три способа дальнейшего снижения частоты промахов были исследованы.

    Первый способ — это достижение более равномерного использования банков и наборов кэша применением хэш-функций для интерливинга и индексирования. В экспериментах в тестах SPEC CPU2017 refrate, даже простейшие хэш-функции на основе XOR показали увеличение производительности на 3,2%, 9,1% и 8,2% в конфигурациях процессора с 16, 32 и 64 ядрами и банками общего кэша, сравнимое с результатами для более сложных функций на основе матриц, деления и CRC.

    Вторая оптимизация нацелена на уменьшение дублирования на разных уровнях кэшей путем автоматического переключения на эксклюзивную схему, когда она выглядит оптимальной. Известная схема этого типа, FLEXclusion, была модифицирована для использования в NCID-кэшах и показала улучшение производительности в среднемна 3,8%, 5,4% и 7,9% для 16-, 32- и 64-ядерных конфигураций.

    Третьей оптимизацией является увеличение фактической емкости кэша использованием компрессии. Частота сжатия недорогим и быстрыма лгоритмом B DI*-HL (Base-Delta-Immediate Modified, Half-Line), разработанным для NCID, была измерена, и соответствующее увеличение емкости кэша дало около 1% среднего повышения производительности.

    Все три оптимизации могут сочетаться и продемонстрировали прирост производительности в 7,7%, 16% и 19% для конфигураций с 16, 32 и 64 ядрами и банками соответственно.

    Nedbailo Y.A., Surchenko A.V., Bychkov I.N.
    Reducing miss rate in a non-inclusive cache with inclusive directory of a chip multiprocessor
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 639-656

    Although the era of exponential performance growth in computer chips has ended, processor core numbers have reached 16 or more even in general-purpose desktop CPUs. As DRAM throughput is unable to keep pace with this computing power growth, CPU designers need to find ways of lowering memory traffic per instruction. The straightforward way to do this is to reduce the miss rate of the last-level cache. Assuming “non-inclusive cache, inclusive directory” (NCID) scheme already implemented, three ways of reducing the cache miss rate further were studied.

    The first is to achieve more uniform usage of cache banks and sets by employing hash-based interleaving and indexing. In the experiments in SPEC CPU2017 refrate tests, even the simplest XOR-based hash functions demonstrated a performance increase of 3.2%, 9.1%, and 8.2% for CPU configurations with 16, 32, and 64 cores and last-level cache banks, comparable to the results of more complex matrix-, division- and CRC-based functions.

    The second optimisation is aimed at reducing replication at different cache levels by means of automatically switching to the exclusive scheme when it appears optimal. A known scheme of this type, FLEXclusion, was modified for use in NCID caches and showed an average performance gain of 3.8%, 5.4 %, and 7.9% for 16-, 32-, and 64-core configurations.

    The third optimisation is to increase the effective cache capacity using compression. The compression rate of the inexpensive and fast BDI*-HL (Base-Delta-Immediate Modified, Half-Line) algorithm, designed for NCID, was measured, and the respective increase in cache capacity yielded roughly 1% of the average performance increase.

    All three optimisations can be combined and demonstrated a performance gain of 7.7%, 16% and 19% for CPU configurations with 16, 32, and 64 cores and banks, respectively.

  3. Алмасри А., Цибулин В.Г.
    Мультистабильность для математической модели тритрофической системы на неоднородном ареале
    Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 923-939

    Рассматривается пространственно-временная модель тритрофической системы, описывающая взаимодействие жертвы, хищника и суперхищника в среде с неоднородным распределением ресурса. Учитываются всеядность суперхищника (Intraguild Predation, IGP), диффузия и направленная миграция (таксис), который моделируется с помощью логарифмической функции от ресурса и плотности жертвы. Основное внимание уделено анализу мультистабильности системы и роли косимметрии в формировании континуальных семейств стационарных решений. С использованием численно-аналитического подхода изучаются пространственно-однородные и неоднородные стационарные решения. Установлено, что при выполнении дополнительных соотношений между параметрами, характеризующими локальное взаимодействие хищников, и коэффициентами диффузии система обладает косимметрией, что приводит к возникновению семейства устойчивых стационарных решений, пропорциональных функции ресурса. Показано, что косимметрия не зависит от функции ресурса в случае неоднородной среды. Проведено исследование устойчивости стационарных распределений с помощью спектрального метода. Нарушение условий косимметрии приводит к разрушению семейства и появлению изолированных стационарных состояний, а также к длительным переходным процессам, отражающим память системы об исчезнувшем семействе. В зависимости от начальных условий и параметров в системе реализуются переходы к режимам с одним хищником (выживание хищника или суперхищника) или к сосуществованию хищников. Численные эксперименты на основе метода прямых (разностная схема по пространственной переменной и метод Рунге – Кутты для интегрирования по времени) подтверждают мультистабильность системы и иллюстрируют исчезновение семейства решений при разрушении косимметрии.

    Almasri A., Tsybulin V.G.
    Multistability for a mathematical model of a tritrophic system in a heterogeneous habitat
    Computer Research and Modeling, 2025, v. 17, no. 5, pp. 923-939

    We consider a spatiotemporal model of a tritrophic system describing the interaction between prey, predator, and superpredator in an environment with nonuniform resource distribution. The model incorporates superpredator omnivory (Intraguild Predation, IGP), diffusion, and directed migration (taxis), the latter modeled using a logarithmic function of resource availability and prey density. The primary focus is on analyzing the multistability of the system and the role of cosymmetry in the formation of continuous families of steady-state solutions. Using a numerical-analytical approach, we study both spatially homogeneous and inhomogeneous steady-state solutions. It is established that under additional relations between the parameters governing local predator interactions and diffusion coefficients, the system exhibits cosymmetry, leading to the emergence of a family of stable steady-state solutions proportional to the resource function. We demonstrate that the cosymmetry is independent of the resource function in the case of a heterogeneous environment. The stability of stationary distributions is investigated using spectral methods. Violation of the cosymmetry conditions results in the breakdown of the solution family and the emergence of isolated equilibria, as well as prolonged transient dynamics reflecting the system’s “memory” of the vanished states. Depending on initial conditions and parameters, the system exhibits transitions to single-predator regimes (survival of either the predator or superpredator) or predator coexistence. Numerical experiments based on the method of lines, which involves finite difference discretization in space and Runge –Kutta integration in time, confirm the system’s multistability and illustrate the disappearance of solution families when cosymmetry is broken.

  4. Романовский М.Ю., Видов П.В., Пыркин В.А.
    Является ли тик элементарным прыжком в схеме случайных блужданий на фондовом рынке?
    Компьютерные исследования и моделирование, 2010, т. 2, № 2, с. 219-223

    В работе экспериментально исследовалось среднее время между элементарными прыжками доходности различных акций на российском фондовом рынке. Исходя из скейлинга плотности распределения доходностей на разных временных масштабах, удалось показать, что элементарным прыжком в модели случайных блужданий для доходностей финансовых инструментов является единичное изменение цены (тик), соответствующее совершению одной сделки с инструментом на фондовой бирже.

    Romanovsky M.Y., Vidov P.V., Pyrkin V.A.
    Is a tick an elementary jump in a random walks scheme on the stock market?
    Computer Research and Modeling, 2010, v. 2, no. 2, pp. 219-223

    In this paper average times between elementary jumps of stock returns on the Russian market were experimentally studied. Considering the scaling of the probability density function of stock returns on different time intervals it is shown that an elementary jump in the random walks scheme for financial instrument returns is a unit price change (tick) that corresponds to a single deal on the stock market.

    Views (last year): 3. Citations: 1 (RSCI).
  5. Охапкин В.П.
    Оптимальное управление вложением средств коммерческого банка с учетом процессов реинвестирования
    Компьютерные исследования и моделирование, 2014, т. 6, № 2, с. 309-319

    Статья посвящена созданию математического управления процессами вложения средств банка в его деятельность. Весь процесс построения оптимального управления можно разбить на две составляющие: первая, выявление функций, описывающих движение ликвидного капитала в банке, и вторая, использование полученных функций в схеме динамического программирования. Прежде эта задача была рассмотрена в статье «Оптимальное управление вложением средств банка как фактор экономической стабильности» в № 4 за 2012 год. В существующей статье рассмотрена модификация этого решения, в частности, вводится дополнительная функция реинвестирования ℜ(φ), где φ — это приток ликвидных средств от предшествующего шага.

    Okhapkin V.P.
    Optimal control of the commercial bank investment including the reinvestment processes
    Computer Research and Modeling, 2014, v. 6, no. 2, pp. 309-319

    Article is devoted to the creation of a mathematical control of the bank investment process. The whole process of building optimal control may be divided into two components: in the first place, there is the identification of the functions describing the liquid capital movement in the bank and, in the second place, the use of these functions in the scheme of dynamic programming. Before this problem was discussed in the article "Optimal control of the bank investment as a factor of economic stability" in the 4th issue for 2012. In the present article considers this modification of the solution, in particular, we use ℜ(φ) as a function of reinvestment, where φ is inflow of liquid capital realized at the previous step of control.

    Views (last year): 6. Citations: 1 (RSCI).
  6. Брацун Д.А., Захаров А.П., Письмен Л.М.
    Многоуровневое математическое моделирование возникновения и роста опухоли в ткани эпителия
    Компьютерные исследования и моделирование, 2014, т. 6, № 4, с. 585-604

    В работе предлагается математическая модель возникновения раковых образований в двумерной ткани эпителия. Базисная модель роста эпителия описывает возникновение интенсивного движения и роста ткани при ее повреждении. Для этого в схеме расчета предусмотрена возможность деления и интеркаляции клеток. Предполагается, что движение клеток растущего эпителия вызывается волной митоген-активируемой протеинкиназы, которая в свою очередь активируется химико-механическим сигналом, распространяющимся по ткани из-за ее локального повреждения. В работе предполагается, что раковые клетки возникают из-за локального сбоя пространственной синхронизации циркадианных ритмов. Изучение эволюционной динамики модели позволяет изучить физико-химические свойства опухоли и определить связь между возникновением раковых клеток и параметрами развития всей ткани, координирующей свою эволюцию посредством обмена химико-механическими сигналами.

    Bratsun D.A., Zakharov A.P., Pismen L.M.
    Multiscale mathematical modeling occurrence and growth of a tumour in an epithelial tissue
    Computer Research and Modeling, 2014, v. 6, no. 4, pp. 585-604

    In this paper we propose a mathematical model of cancer tumour occurrence in a quasi twodimensional epithelial tissue. Basic model of the epithelium growth describes the appearance of intensive movement and growth of tissue when it is damaged. The model includes the effects of division of cells and intercalation. It is assumed that the movement of cells is caused by the wave of mitogen-activated protein kinase (MAPK), which in turn activated by the chemo-mechanical signal propagating along tissue due to its local damage. In this paper it is assumed that cancer cells arise from local failure of spatial synchronization of circadian rhythms. The study of the evolutionary dynamics of the model could determine the chemo-physical properties of a tumour, and spatial relationship between the occurrence of cancer cells and development of the entire tissue parameters coordinating its evolution through the exchange of chemical and mechanical signals.

    Views (last year): 10. Citations: 12 (RSCI).
  7. Припутина И.В., Фролова Г.Г., Шанин В.Н.
    Выбор оптимальных схем посадки лесных культур: компьютерный эксперимент
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 333-343

    В статье проанализированы результаты компьютерного эксперимента по оценке влияния пространственного размещения (схем посадки) деревьев на продукционный процесс и динамику почвенного плодородия в лесных плантациях. Для имитации роста плантаций нативной формы осины (Populus tremula L.) с коротким (30 лет) оборотом рубки использована система моделей EFIMOD и почвенно-климатические данные, соответствующие условиям лесной зоны Республики Марий Эл. По результатам модельных оценок, схемы посадки с расстоянием между деревьями в ряду 1–4 м и междурядьями 4–6 м характеризуются наибольшими показателями продукции биомассы, повышением почвенных запасов органического вещества и минимальными потерями азота почв за оборот рубки.

    Priputina I.V., Frolova G.G., Shanin V.N.
    Substantiation of optimum planting schemes for forest plantations: a computer experiment
    Computer Research and Modeling, 2016, v. 8, no. 2, pp. 333-343

    The article presents the results of computer simulations aimed to assess the influence of tree spatial locations (planting schemes) on the productivity and the dynamics of soil fertility in forest plantations. The growth of aspen (Populus tremula L.) in plantations with short rotation (30 years) was simulated in the EFIMOD system of models with the soil and climatic data matching forested lands in the Mari El Republic. The outcome reveals that higher biomass rates, increase in soil organic matter stocks, and the minimal loss of soil nitrogen can be obtained when the distance between trees in the row equals 1–4 m and 4–6 м in aisles.

    Views (last year): 2. Citations: 2 (RSCI).
  8. Орлова Е.В.
    Модель оперативного оптимального управления распределением финансовых ресурсов предприятия
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 343-358

    В статье проведен критический анализ существующих методов и моделей, предназначенных для решения задачи планирования распределения финансовых ресурсов в цикле оперативного управления предприятием. Выявлен ряд существенных недостатков представленных моделей, ограничивающих сферу их применения: статический характер моделей, не учитывается вероятностный характер финансовых потоков, не выявляются существенно влияющие на платежеспособность и ликвидность предприятия ежедневные суммы остатков дебиторской и кредиторской задолженности. Это обуславливает необходи- мость разработки новой модели, отражающей существенные свойства системы планирования финансо- вых потоков — стохастичность, динамичность, нестационарность. Назначением такой модели является информационная поддержка принимаемых решений при формировании плана расходования финансовых ресурсов по критериям экономической эффективности.

    Разработана модель распределения финансовых потоков, основанная на принципах оптимального динамического управления и методе динамического программирования, обеспечивающая планирование распределения финансовых ресурсов с учетом достижения достаточного уровня ликвидности и платежеспособности предприятия в условиях неопределенности исходных данных. Предложена алгоритмическая схема формирования целевого остатка денежных средств на принципах обеспечения финансовой устойчивости предприятия в условиях изменяющихся финансовых ограничений.

    Особенностью предложенной модели является представление процесса распределения денежных средств в виде дискретного динамического процесса, для которого определяется план распределения финансовых ресурсов, обеспечивающий экстремум критерия эффективности. Формирование такого плана основано на согласовании платежей (финансовых оттоков) с их поступлениями (финансовыми притоками). Такой подход позволяет синтезировать разные планы, отличающиеся разным сочетанием финансовых оттоков, а затем осуществлять поиск наилучшего по заданному критерию. В качестве критерия эффективности приняты минимальные суммарные затраты, связанные с уплатой штрафов за несвоевременное финансирование расходных статей. Ограничениями в модели являются требование обеспечения минимально допустимой величины остатков накопленных денежных средств по подпериодам планового периода, а также обязательность осуществления платежей в течение планового периода с учетом сроков погашения этих платежей. Модель позволяет с высокой степенью эффективности решать задачу планирования распределения финансовых ресурсов в условиях неопределенности сроков и объемов их поступления, согласования притоков и оттоков финансовых ресурсов. Практическая значимость модели состоит в возможности улучшить качество финансового планирования, повысить эффективность управления и операционную эффективность предприятия.

    Orlova E.V.
    Model for operational optimal control of financial recourses distribution in a company
    Computer Research and Modeling, 2019, v. 11, no. 2, pp. 343-358

    A critical analysis of existing approaches, methods and models to solve the problem of financial resources operational management has been carried out in the article. A number of significant shortcomings of the presented models were identified, limiting the scope of their effective usage. There are a static nature of the models, probabilistic nature of financial flows are not taken into account, daily amounts of receivables and payables that significantly affect the solvency and liquidity of the company are not identified. This necessitates the development of a new model that reflects the essential properties of the planning financial flows system — stochasticity, dynamism, non-stationarity.

    The model for the financial flows distribution has been developed. It bases on the principles of optimal dynamic control and provides financial resources planning ensuring an adequate level of liquidity and solvency of a company and concern initial data uncertainty. The algorithm for designing the objective cash balance, based on principles of a companies’ financial stability ensuring under changing financial constraints, is proposed.

    Characteristic of the proposed model is the presentation of the cash distribution process in the form of a discrete dynamic process, for which a plan for financial resources allocation is determined, ensuring the extremum of an optimality criterion. Designing of such plan is based on the coordination of payments (cash expenses) with the cash receipts. This approach allows to synthesize different plans that differ in combinations of financial outflows, and then to select the best one according to a given criterion. The minimum total costs associated with the payment of fines for non-timely financing of expenses were taken as the optimality criterion. Restrictions in the model are the requirement to ensure the minimum allowable cash balances for the subperiods of the planning period, as well as the obligation to make payments during the planning period, taking into account the maturity of these payments. The suggested model with a high degree of efficiency allows to solve the problem of financial resources distribution under uncertainty over time and receipts, coordination of funds inflows and outflows. The practical significance of the research is in developed model application, allowing to improve the financial planning quality, to increase the management efficiency and operational efficiency of a company.

    Views (last year): 33.
  9. Якушевич Л.В.
    От однородного к неоднородному электронному аналогу ДНК
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1397-1407

    В данной работе с помощью методов математического моделирования решается задача о построении электронного аналога неоднородной ДНК. Такие электронные аналоги, наряду с другими физическими моделями живых систем, широко используются в качестве инструмента для изучения динамических и функциональных свойств этих систем. Решение задачи строится на основе алгоритма, разработанного ранее для однородной (синтетической) ДНК и модифицированного таким образом, чтобы его можно было использовать для случая неоднородной (природной) ДНК. Этот алгоритм включает следующие шаги: выбор модели, имитирующей внутреннюю подвижность ДНК; построение преобразования, позволяющего перейти от модели ДНК к ее электронному аналогу; поиск условий, обеспечивающих аналогию уравнений ДНК и уравнений электронного аналога; расчет параметров эквивалентной электрической цепи. Для описания неоднородной ДНК была выбрана модель, представляющая собой систему дискретных нелинейных дифференциальных уравнений, имитирующих угловые отклонения азотистых оснований, и соответствующий этим уравнениям гамильтониан. Значения коэффициентов в модельных уравнениях полностью определяются динамическими параметрами молекулы ДНК, включая моменты инерции азотистых оснований, жесткость сахаро-фосфатной цепи, константы, характеризующие взаимодействия между комплементарными основаниями внутри пар. В качестве основы для построения электронной модели была использована неоднородная линия Джозефсона, эквивалентная схема которой содержит четыре типа ячеек: A-, T-, G- и C-ячейки. Каждая ячейка, в свою очередь, состоит из трех элементов: емкости, индуктивности и джозефсоновского контакта. Важно, чтобы A-, T-, G- и C-ячейки джозефсоновской линии располагались в определенном порядке, который аналогичен порядку расположения азотистых оснований (A, T, G и C) в последовательности ДНК. Переход от ДНК к электронному аналогу осуществлялся с помощью А-преобразования, что позволило рассчитать значения емкости, индуктивности и джозефсоновского контакта в A-ячейках. Значения параметров для T-, G- и C-ячеек эквивалентной электрической цепи были получены из условий, накладываемых на коэффициенты модельных уравнений и обеспечивающих аналогию между ДНК и электронной моделью.

    Yakushevich L.V.
    From homogeneous to inhomogeneous electronic analogue of DNA
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1397-1407

    In this work, the problem of constructing an electronic analogue of heterogeneous DNA is solved with the help of the methods of mathematical modeling. Electronic analogs of that type, along with other physical models of living systems, are widely used as a tool for studying the dynamic and functional properties of these systems. The solution to the problem is based on an algorithm previously developed for homogeneous (synthetic) DNA and modified in such a way that it can be used for the case of inhomogeneous (native) DNA. The algorithm includes the following steps: selection of a model that simulates the internal mobility of DNA; construction of a transformation that allows you to move from the DNA model to its electronic analogue; search for conditions that provide an analogy of DNA equations and electronic analogue equations; calculation of the parameters of the equivalent electrical circuit. To describe inhomogeneous DNA, the model was chosen that is a system of discrete nonlinear differential equations simulating the angular deviations of nitrogenous bases, and Hamiltonian corresponding to these equations. The values of the coefficients in the model equations are completely determined by the dynamic parameters of the DNA molecule, including the moments of inertia of nitrous bases, the rigidity of the sugar-phosphate chain, and the constants characterizing the interactions between complementary bases in pairs. The inhomogeneous Josephson line was used as a basis for constructing an electronic model, the equivalent circuit of which contains four types of cells: A-, T-, G-, and C-cells. Each cell, in turn, consists of three elements: capacitance, inductance, and Josephson junction. It is important that the A-, T-, G- and C-cells of the Josephson line are arranged in a specific order, which is similar to the order of the nitrogenous bases (A, T, G and C) in the DNA sequence. The transition from DNA to an electronic analog was carried out with the help of the A-transformation which made it possible to calculate the values of the capacitance, inductance, and Josephson junction in the A-cells. The parameter values for the T-, G-, and C-cells of the equivalent electrical circuit were obtained from the conditions imposed on the coefficients of the model equations and providing an analogy between DNA and the electronic model.

  10. Губайдуллин И.М., Язовцева О.С.
    Исследование усредненной модели окислительной регенерации закоксованного катализатора
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 149-161

    Статья посвящена построению и исследованию усредненной математической модели окислительной регенерации алюмокобальтмолибденового катализатора гидрокрекинга. Окислительная регенерация является эффективным средством восстановления активности катализатора при покрытии его гранул коксовыми отложениями.

    Математическая модель указанного процесса представляет собой нелинейную систему обыкновенных дифференциальных уравнений, в которую включены кинетические уравнения для концентраций реагентов и уравнения для учета изменения температуры зерна катализатора и реакционной смеси в результате протекания неизотермических реакций и теплообмена между газом и слоем катализатора. Вследствие гетерогенности процесса окислительной регенерации часть уравнений отличается от стандартных кинетических и построена на основе эмпирических данных. В статье рассмотрена схема химического взаимодействия в процессе регенерации, на основе которой составлены уравнения материального баланса. В ней отражены непосредственное взаимодействие кокса и кислорода с учетом степени покрытия гранулы кокса углерод-водородным и углерод-кислородным комплексами, выделение монооксида и диоксида углерода в процессе горения, а также освобождение кислорода и водорода внутри зерна катализатора. При построении модели учитывается изменение радиуса, а следовательно, и площади поверхности коксовых гранул. Адекватность разработанной усредненной модели подтверждена анализом динамики концентраций веществ и температуры.

    В статье приведен численный эксперимент для математической модели окислительной регенерации алюмокобальтмолибденового катализатора гидрокрекинга. Эксперимент проведен с использованием метода Кутты–Мерсона. Этот метод относится к методам семейства Рунге–Кутты, но разработан для решения жестких систем обыкновенных дифференциальных уравнений. Результаты вычислительного эксперимента визуализированы.

    В работе приведена динамика концентраций веществ, участвующих в процессе окислительной регенерации. На основании соответствия полученных результатов физико-химическим законам сделан вывод об адекватности построенной математической модели. Проанализирован разогрев зерна катализатора и выделение монооксида углерода при изменении радиуса зерна для различных степеней начальной закоксованности. Дано описание полученных результатов.

    В заключении отмечены основные результаты, приведены примеры задач, для решения которых может быть применена разработанная математическая модель.

    Gubaydullin I.M., Yazovtseva O.S.
    Investigation of the averaged model of coked catalyst oxidative regeneration
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 149-161

    The article is devoted to the construction and investigation of an averaged mathematical model of an aluminum-cobalt-molybdenum hydrocracking catalyst oxidative regeneration. The oxidative regeneration is an effective means of restoring the activity of the catalyst when its granules are coating with coke scurf.

    The mathematical model of this process is a nonlinear system of ordinary differential equations, which includes kinetic equations for reagents’ concentrations and equations for changes in the temperature of the catalyst granule and the reaction mixture as a result of isothermal reactions and heat transfer between the gas and the catalyst layer. Due to the heterogeneity of the oxidative regeneration process, some of the equations differ from the standard kinetic ones and are based on empirical data. The article discusses the scheme of chemical interaction in the regeneration process, which the material balance equations are compiled on the basis of. It reflects the direct interaction of coke and oxygen, taking into account the degree of coverage of the coke granule with carbon-hydrogen and carbon-oxygen complexes, the release of carbon monoxide and carbon dioxide during combustion, as well as the release of oxygen and hydrogen inside the catalyst granule. The change of the radius and, consequently, the surface area of coke pellets is taken into account. The adequacy of the developed averaged model is confirmed by an analysis of the dynamics of the concentrations of substances and temperature.

    The article presents a numerical experiment for a mathematical model of oxidative regeneration of an aluminum-cobalt-molybdenum hydrocracking catalyst. The experiment was carried out using the Kutta–Merson method. This method belongs to the methods of the Runge–Kutta family, but is designed to solve stiff systems of ordinary differential equations. The results of a computational experiment are visualized.

    The paper presents the dynamics of the concentrations of substances involved in the oxidative regeneration process. A conclusion on the adequacy of the constructed mathematical model is drawn on the basis of the correspondence of the obtained results to physicochemical laws. The heating of the catalyst granule and the release of carbon monoxide with a change in the radius of the granule for various degrees of initial coking are analyzed. There are a description of the results.

    In conclusion, the main results and examples of problems which can be solved using the developed mathematical model are noted.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"