All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Optimization of geometric analysis strategy in CAD-systems
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 825-840Computer-aided assembly planning for complex products is an important engineering and scientific problem. The assembly sequence and content of assembly operations largely depend on the mechanical structure and geometric properties of a product. An overview of geometric modeling methods that are used in modern computer-aided design systems is provided. Modeling geometric obstacles in assembly using collision detection, motion planning, and virtual reality is very computationally intensive. Combinatorial methods provide only weak necessary conditions for geometric reasoning. The important problem of minimizing the number of geometric tests during the synthesis of assembly operations and processes is considered. A formalization of this problem is based on a hypergraph model of the mechanical structure of the product. This model provides a correct mathematical description of coherent and sequential assembly operations. The key concept of the geometric situation is introduced. This is a configuration of product parts that requires analysis for freedom from obstacles and this analysis gives interpretable results. A mathematical description of geometric heredity during the assembly of complex products is proposed. Two axioms of heredity allow us to extend the results of testing one geometric situation to many other situations. The problem of minimizing the number of geometric tests is posed as a non-antagonistic game between decision maker and nature, in which it is required to color the vertices of an ordered set in two colors. The vertices represent geometric situations, and the color is a metaphor for the result of a collision-free test. The decision maker’s move is to select an uncolored vertex; nature’s answer is its color. The game requires you to color an ordered set in a minimum number of moves by decision maker. The project situation in which the decision maker makes a decision under risk conditions is discussed. A method for calculating the probabilities of coloring the vertices of an ordered set is proposed. The basic pure strategies of rational behavior in this game are described. An original synthetic criterion for making rational decisions under risk conditions has been developed. Two heuristics are proposed that can be used to color ordered sets of high cardinality and complex structure.
-
Impact of spatial resolution on mobile robot path optimality in two-dimensional lattice models
Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1131-1148This paper examines the impact of the spatial resolution of a discretized (lattice) representation of the environment on the efficiency and correctness of optimal pathfinding in complex environments. Scenarios are considered that may include bottlenecks, non-uniform obstacle distributions, and areas of increased safety requirements in the immediate vicinity of obstacles. Despite the widespread use of lattice representations of the environment in robotics due to their compatibility with sensor data and support for classical trajectory planning algorithms, the resolution of these lattices has a significant impact on both goal reachability and optimal path performance. An algorithm is proposed that combines environmental connectivity analysis, trajectory optimization, and geometric safety refinement. In the first stage, the Leath algorithm is used to estimate the reachability of the target point by identifying a connected component containing the starting position. Upon confirmation of the target point’s reachability, the A* algorithm is applied to the nodes of this component in the second stage to construct a path that simultaneously minimizes both the path length and the risk of collision. In the third stage, a refined obstacle distance estimate is performed for nodes located in safety zones using a combination of the Gilbert – Johnson –Keerthi (GJK) and expanding polyhedron (EPA) algorithms. Experimental analysis revealed a nonlinear relationship between the probability of the existence and effectiveness of an optimal path and the lattice parameters. Specifically, reducing the spatial resolution of the lattice increases the likelihood of connectivity loss and target unreachability, while increasing its spatial resolution increases computational complexity without a proportional improvement in the optimal path’s performance.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




