Processing math: 100%
Результаты поиска по 'architecture':
Найдено статей: 36
  1. Khoruzhnikov S.E., Grudinin V.A., Sadov O.L., Shevel A.Y., Kairkanov A.B.
    Preliminary study of big data transfer over computer network
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 421-427

    The transfer of Big Data over computer network is important and unavoidable operation in the past, now and in any feasible future. There are a number of methods to transfer the data over computer global network (Internet) with a range of tools. In this paper the transfer of one piece of Big Data from one point in the Internet to another point in Internet in general over long range distance: many thousands kilometers. Several free of charge systems to transfer the Big Data are analyzed here. The most important architecture features are emphasized and suggested idea to add SDN Openflow protocol technique for fine tuning the data transfer over several parallel data links.

    Views (last year): 4.
  2. Babakov A.V., Chechetkin V.M.
    Mathematical simulation of vortex motion in the astrophysical objects on the basis of the gas-dynamic model
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 631-643

    The application of a conservative numerical method of fluxes is examined for studying the vortex structures in the massive, fast-turned compact astrophysical objects, which are in self-gravity conditions. The simulation is accomplished for the objects with different mass and rotational speed. The pictures of the vortex structure of objects are visualized. In the calculations the gas-dynamic model is used, in which gas is accepted perfected and nonviscous. Numerical procedure is based on the finite-difference approximation of the conservation laws of the additive characteristics of medium for the finite volume. The “upwind” approximations of the densities of distribution of mass, components of momentum and total energy are applied. For the simulation of the objects, which possess fast-spin motion, the control of conservation for the component of moment of momentun is carried out during calculation. Evolutionary calculation is carried out on the basis of the parallel algorithms, realized on the computer complex of cluster architecture. Algorithms are based on the standardized system of message transfer Message Passing Interface (MPI). The blocking procedures of exchange and non-blocking procedures of exchange with control of the completion of operation are used. The parallelization on the space in two or three directions is carried out depending on the size of integration area and parameters of computational grid. For each subarea the parallelization based on the physical factors is carried out also: the calculations of gas dynamics part and gravitational forces are realized on the different processors, that allows to raise the efficiency of algorithms. The real possibility of the direct calculation of gravitational forces by means of the summation of interaction between all finite volumes in the integration area is shown. For the finite volume methods this approach seems to more consecutive than the solution of Poisson’s equation for the gravitational potential. Numerical calculations were carried out on the computer complex of cluster architecture with the peak productivity 523 TFlops. In the calculations up to thousand processors was used.

    Views (last year): 27.
  3. Sitnikov S.S., Tcheremissine F.G.
    Computation of a shock wave structure in a gas mixture based on the Boltzmann equation with accuracy control
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1107-1123

    In this paper, the structure of a shock wave in a binary gas mixture is studied on the basis of direct solution of the Boltzmann kinetic equation. The conservative projection method is used to evaluate the collision integral in the kinetic equation. The applied evaluation formulas and numerical methods are described in detail. The model of hard spheres is used as an interaction potential of molecules. Numerical simulation is performed using the developed simulation environment software, which makes it possible to study both steady and non-steady flows of gas mixtures in various flow regimes and for an arbitrary geometry of the problem. Modeling is performed on a cluster architecture. Due to the use of code parallelization technologies, a significant acceleration of computations is achieved. With a fixed accuracy controlled by the simulation parameters, the distributions of macroscopic characteristics of the mixture components through the shock wave front were obtained. Computations were conducted for various ratios of molecular masses and Mach numbers. The total accuracy of at least 1% for the local values of molecular density and temperature and 3% for the shock front width was achieved. The obtained results were compared with existing computation data. The results presented in this paper are of theoretical significance, and can serve as a test computation, since they are obtained using the exact Boltzmann equation.

  4. Kiryushkin A.E., Minkov L.L.
    Parallel implementation of numerical algorithm of solving coupled internal ballistics modelling problem for solid rocket motors
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 47-65

    We present a physico-mathematical statement of coupled geometrical and gas dynamics problem of intrachamber processes simulation and calculation of main internal ballistics characteristics of solid rocket motors in axisymmetric approximation. Method and numerical algorithm of solving the problem are described in this paper. We track the propellant burning surface using the level set method. This method allows us to implicitly represent the surface on a fixed Cartesian grid as zero-level of some function. Two-dimensional gas-dynamics equations describe a flow of combustion products in a solid rocket motor. Due to inconsistency of domain boundaries and nodes of computational grid, presence of ghost points lying outside the computational domain is taken into account. For setting the values of flow parameters in ghost points, we use the inverse Lax – Wendroff procedure. We discretize spatial derivatives of level set and gas-dynamics equations with standard WENO schemes of fifth and third-order respectively and time derivatives using total variation diminishing Runge –Kutta methods. We parallelize the presented numerical algorithm using CUDA technology and further optimize it with regard to peculiarities of graphics processors architecture.

    Created software package is used for calculating internal ballistics characteristics of nozzleless solid rocket motor during main firing phase. On the base of obtained numerical results, we discuss efficiency of parallelization using CUDA technology and applying considered optimizations. It has been shown that implemented parallelization technique leads to a significant acceleration in comparison with central processes. Distributions of key parameters of combustion products flow in different periods of time have been presented in this paper. We make a comparison of obtained results between quasione-dimensional approach and developed numerical technique.

  5. Nikulin A.S., ZHediaevskii D.N., Fedorova E.B.
    Applying artificial neural network for the selection of mixed refrigerant by boiling curve
    Computer Research and Modeling, 2022, v. 14, no. 3, pp. 593-608

    The paper provides a method for selecting the composition of a refrigerant with a given isobaric cooling curve using an artificial neural network (ANN). This method is based on the use of 1D layers of a convolutional neural network. To train the neural network, we applied a technological model of a simple heat exchanger in the UniSim design program, using the Peng – Robinson equation of state.We created synthetic database on isobaric boiling curves of refrigerants of different compositions using the technological model. To record the database, an algorithm was developed in the Python programming language, and information on isobaric boiling curves for 1 049 500 compositions was uploaded using the COM interface. The compositions have generated by Monte Carlo method. Designed architecture of ANN allows select composition of a mixed refrigerant by 101 points of boiling curve. ANN gives mole flows of mixed refrigerant by composition (methane, ethane, propane, nitrogen) on the output layer. For training ANN, we used method of cyclical learning rate. For results demonstration we selected MR composition by natural gas cooling curve with a minimum temperature drop of 3 К and a maximum temperature drop of no more than 10 К, which turn better than we predicted via UniSim SQP optimizer and better than predicted by k-nearest neighbors algorithm. A significant value of this article is the fact that an artificial neural network can be used to select the optimal composition of the refrigerant when analyzing the cooling curve of natural gas. This method can help engineers select the composition of the mixed refrigerant in real time, which will help reduce the energy consumption of natural gas liquefaction.

  6. Kazorin V.I., Kholodov Y.A.
    Framework sumo-atclib for adaptive traffic control modeling
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 69-78

    This article proposes the sumo-atclib framework, which provides a convenient uniform interface for testing adaptive control algorithms with different limitations, for example, restrictions on phase durations, phase sequences, restrictions on the minimum time between control actions, which uses the open source microscopic transport modeling environment SUMO. The framework shares the functionality of controllers (class TrafficController) and a monitoring and detection system (class StateObserver), which repeats the architecture of real traffic light objects and adaptive control systems and simplifies the testing of new algorithms, since combinations of different controllers and vehicle detection systems can be freely varied. Also, unlike most existing solutions, the road class Road has been added, which combines a set of lanes, this allows, for example, to determine the adjacency of regulated intersections, in cases when the number of lanes changes on the way from one intersection to another, and therefore the road graph is divided into several edges. At the same time, the algorithms themselves use the same interface and are abstracted from the specific parameters of the detectors, network topologies, that is, it is assumed that this solution will allow the transport engineer to test ready-made algorithms for a new scenario, without the need to adapt them to new conditions, which speeds up the development process of the control system, and reduces design overhead. At the moment, the package contains examples of MaxPressure algorithms and the Q-learning reinforcement learning method, the database of examples is also being updated. The framework also includes a set of SUMO scripts for testing algorithms, which includes both synthetic maps and well-verified SUMO scripts such as Cologne and Ingolstadt. In addition, the framework provides a set of automatically calculated metrics, such as total travel time, delay time, average speed; the framework also provides a ready-made example for visualization of metrics.

  7. Chernavskaya O.D.
    Dynamical theory of information as a basis for natural-constructive approach to modeling a cognitive process
    Computer Research and Modeling, 2017, v. 9, no. 3, pp. 433-447

    The main statements and inferences of the Dynamic Theory Information (DTI) are considered. It is shown that DTI provides the possibility two reveal two essentially important types of information: objective (unconventional) and subjective (conventional) informtion. There are two ways of obtaining information: reception (perception of an already existing one) and generation (production of new) information. It is shown that the processes of generation and perception of information should proceed in two different subsystems of the same cognitive system. The main points of the Natural-Constructivist Approach to modeling the cognitive process are discussed. It is shown that any neuromorphic approach faces the problem of Explanatory Gap between the “Brain” and the “Mind”, i. e. the gap between objectively measurable information about the ensemble of neurons (“Brain”) and subjective information about the human consciousness (“Mind”). The Natural-Constructive Cognitive Architecture developed within the framework of this approach is discussed. It is a complex block-hierarchical combination of several neuroprocessors. The main constructive feature of this architecture is splitting the whole system into two linked subsystems, by analogy with the hemispheres of the human brain. One of the subsystems is processing the new information, learning, and creativity, i.e. for the generation of information. Another subsystem is responsible for processing already existing information, i.e. reception of information. It is shown that the lowest (zero) level of the hierarchy is represented by processors that should record images of real objects (distributed memory) as a response to sensory signals, which is objective information (and refers to the “Brain”). The next hierarchy levels are represented by processors containing symbols of the recorded images. It is shown that symbols represent subjective (conventional) information created by the system itself and providing its individuality. The highest hierarchy levels containing the symbols of abstract concepts provide the possibility to interpret the concepts of “consciousness”, “sub-consciousness”, “intuition”, referring to the field of “Mind”, in terms of the ensemble of neurons. Thus, DTI provides an opportunity to build a model that allows us to trace how the “Mind” could emerge basing on the “Brain”.

    Views (last year): 6.
  8. Khan S.A., Shulepina S., Shulepin D., Lukmanov R.A.
    Review of algorithmic solutions for deployment of neural networks on lite devices
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1601-1619

    In today’s technology-driven world, lite devices like Internet of Things (IoT) devices and microcontrollers (MCUs) are becoming increasingly common. These devices are more energyefficient and affordable, often with reduced features compared to the standard versions such as very limited memory and processing power for typical machine learning models. However, modern machine learning models can have millions of parameters, resulting in a large memory footprint. This complexity not only makes it difficult to deploy these large models on resource constrained devices but also increases the risk of latency and inefficiency in processing, which is crucial in some cases where real-time responses are required such as autonomous driving and medical diagnostics. In recent years, neural networks have seen significant advancements in model optimization techniques that help deployment and inference on these small devices. This narrative review offers a thorough examination of the progression and latest developments in neural network optimization, focusing on key areas such as quantization, pruning, knowledge distillation, and neural architecture search. It examines how these algorithmic solutions have progressed and how new approaches have improved upon the existing techniques making neural networks more efficient. This review is designed for machine learning researchers, practitioners, and engineers who may be unfamiliar with these methods but wish to explore the available techniques. It highlights ongoing research in optimizing networks for achieving better performance, lowering energy consumption, and enabling faster training times, all of which play an important role in the continued scalability of neural networks. Additionally, it identifies gaps in current research and provides a foundation for future studies, aiming to enhance the applicability and effectiveness of existing optimization strategies.

  9. Tumanyan A.G., Bartsev S.I.
    Model of formation of primary behavioral patterns with adaptive behavior based on the combination of random search and experience
    Computer Research and Modeling, 2016, v. 8, no. 6, pp. 941-950

    In this paper, we propose an adaptive algorithm that simulates the process of forming the initial behavioral skills on the example of the system ‘eye-arm’ animat. The situation is the formation of the initial behavioral skills occurs, for example, when a child masters the management of their hands by understanding the relationship between baseline unidentified spots on the retina of his eye and the position of the real object. Since the body control skills are not ‘hardcoded’ initially in the brain and the spinal cord at the level of instincts, the human child, like most young of other mammals, it is necessary to develop these skills in search behavior mode. Exploratory behavior begins with trial and error and then its contribution is gradually reduced as the development of the body and its environment. Since the correct behavior patterns at this stage of development of the organism does not exist for now, then the only way to select the right skills is a positive reinforcement to achieve the objective. A key feature of the proposed algorithm is to fix in the imprinting mode, only the final action that led to success, and that is very important, led to the familiar imprinted situation clearly leads to success. Over time, the continuous chain is lengthened right action — maximum use of previous positive experiences and negative ‘forgotten’ and not used.

    Thus there is the gradual replacement of the random search purposeful actions that observed in the real young. Thus, the algorithm is able to establish a correspondence between the laws of the world and the ‘inner feelings’, the internal state of the animat. The proposed animat model was used 2 types of neural networks: 1) neural network NET1 to the input current which is fed to the position of the brush arms and the target point, and the output of motor commands, directing ‘brush’ manipulator animat to the target point; 2) neural network NET2 is received at the input of target coordinates and the current coordinates of the ‘brush’ and the output value is formed likelihood that the animat already ‘know’ this situation, and he ‘knows’ how to react to it. With this architecture at the animat has to rely on the ‘experience’ of neural networks to recognize situations where the response from NET2 network of close to 1, and on the other hand, run a random search, when the experience of functioning in this area of the visual field in animat not (response NET2 close to 0).

    Views (last year): 6. Citations: 2 (RSCI).
  10. Minnikhanov R.N., Anikin I.V., Dagaeva M.V., Faizrakhmanov E.M., Bolshakov T.E.
    Modeling of the effective environment in the Republic of Tatarstan using transport data
    Computer Research and Modeling, 2021, v. 13, no. 2, pp. 395-404

    Automated urban traffic monitoring systems are widely used to solve various tasks in intelligent transport systems of different regions. They include video enforcement, video surveillance, traffic management system, etc. Effective traffic management and rapid response to traffic incidents require continuous monitoring and analysis of information from these complexes, as well as time series forecasting for further anomaly detection in traffic flow. To increase the forecasting quality, data fusion from different sources is needed. It will reduce the forecasting error, related to possible incorrect values and data gaps. We implemented the approach for short-term and middle-term forecasting of traffic flow (5, 10, 15 min) based on data fusion from video enforcement and video surveillance systems. We made forecasting using different recurrent neural network architectures: LSTM, GRU, and bidirectional LSTM with one and two layers. We investigated the forecasting quality of bidirectional LSTM with 64 and 128 neurons in hidden layers. The input window size (1, 4, 12, 24, 48) was investigated. The RMSE value was used as a forecasting error. We got minimum RMSE = 0.032405 for basic LSTM with 64 neurons in the hidden layer and window size = 24.

Pages: previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"